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Preface

This book is a vector treatment of the principles of mechanics written
primarily for advanced undergraduate and first-year graduate students of
engineering. However, a substantial part of the material on
kinematics—exclusive of special advanced topics clearly identified within the
text—much of the content dealing with particle dynamics, and some selected
topics from later chapters, have been used in a first course of a lower level.
This introductory course usually is taken by junior students prepared in
general physics, statics, and two years of university mathematics through dif-
ferential equations, which may be studied concurrently. The reader is assumed
to be familiar with elementary vector methods, but the essentials of vector
calculus are reviewed in the applications and separately in a brief Appen-
dix A, in case this familiarity is occasionally inadequate.

The arrangement of the book into two parts—Volume 1: Kinematics and
Volume 2: Dynamics—has always seemed to me the best approach. I have
found that students who first master the kinematics have little additional dif-
ficulty when finally they reach the free body formulation of the dynamics
problem. In fact, this book was conceived initially from a less intensive two-
term sequence of introductory courses in kinematics and dynamics that 1 first
taught to beginning undergraduate mechanical engineering students at the
University of Delaware in 1963. From this beginning, the current structure
has grown from both elementary and intermediate level mechanics courses I
have taught for several years at the University of Kentucky.

When used at the beginning graduate level, I envision that both parts
may be covered in a single semester course; however, the instructor who
prefers to move at a slower pace may use these volumes in consecutive
semesters or quarters. In this case, however, I recommend that this material
be supplemented by use of selected papers and books that treat the more
traditional topics in kinematics of mechanisms, more advanced topics in
Lagrangian mechanics, and possibly some elements of continuum mechanics.
This advanced pair of courses also should include a variety of meaningful,
computer-oriented problems. The limitations of space and my desire to

vii



viii Preface

present a fresh development at an intermediate level force the exclusion of
these other subjects.

Naturally, the presentation is influenced by my personal interests and
background in mechanical engineering, engineering science, and mechanics.
Consequently, the approach I have chosen is somewhat more sophisticated
and mathematical than is often found in traditional textbooks on engineering
mechanics. In keeping with this approach, the aforementioned prerequisite
mathematics, largely that of the eighteenth century and earlier, is used
without apology. Nevertheless, aware that many readers may not have
mastered these prerequisite materials, I have exercised care to reinforce the
essential tools indirectly in the illustrations and problems selected for study.

Unusual mathematical topics, such as singularity functions and some
elements of tensor analysis, are introduced within the text; and the elements of
matrices, nowadays studied by most engineering students, are reviewed in
Appendix B. Parenthetical reference to use of these tools is provided along the
way, with careful indication where such materials may be omitted from a first
course, without loss of continuity. Some elements of set notation are used in
Volume 2, but the student usually is familiar with these simple applications.
In any event, where familiarity may be lacking, comprehension of the ideas
may be readily inferred from the context. Otherwise, the teacher is expected to
elaborate upon remedial mathematical topics peculiar to his or her special
needs by expanding upon these few areas and by building upon the many
examples and problems provided.

The mathematical development and the numerous companion examples
are structured to place emphasis on the predictive value of the methods and
principles of mechanics, rather than on the often empty and less interesting
computational aspects, but not to the exclusion of numerical examples that
illustrate the various operations and definitions. In addition, some meaningful
introductory computer applications are provided in the problems. Examples
have been selected for their instructive value and to help the student achieve
understanding of the various concepts, principles, and analytical methods
presented. In some instances, experimental data, factual situations, and
applications or designs that confirm analytical predictions are described.
Numerous assignment problems, ranging from easy and straightforward
extensions or reinforcements of the subject matter to more difficult problems
that test the creative skills of better students, are given at the end of each
chapter. To assist the student in his studies, some answers to the odd-num-
bered problems are provided at the end.

It is axiomatic that physical intuition or insight cannot be taught. On the
other hand, competence in mathematics and physical reasoning may be
developed so that these special human qualities may be intelligently cultivated
through study of physical applications that mirror the world around us and
through practice of the rational process of reasoning from first principles.
With these attributes in mind, one objective of this book is to help the
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enginecering student develop confidence in transforming problems into
appropriate mathematical language that may be manipulated to derive sub-
stantive and useful physical conclusions or specific numerical results. I intend
that this treatment should provide a more penetrating look at the elements of
classical mechanics and their applications to engineering problems; therefore,
the book is designed to deepen and broaden the student’s understanding and
to develop his or her mastery of the fundamentals. However, to reap a harvest
from the seeds sown here, it is important that the student work through many
of the problems provided for study. The mere understanding that one may
apply theoretical concepts and formulas to solve a particular problem is not
equivalent to possession of the knowledge and skills required to produce its
solution. These talents grow only from experience in dealing repeatedly with
these matters. My view of the importance of solving a lot of problems is
expressed further at the beginning of the problem set for Chapter 1, and the
attitude emphasized there is echoed throughout the text.

It is unfortunate that the subject of mechanical design analysis has suf-
fered such considerable neglect in engineering curricula in this country. I shall
not speculate on the reasons for this decay. On the contrary, it is pleasant to
see in some schools rejuvenation of the role of mechanics and mathematics,
and innovation of the use of the computer in mechanical design curricula. It is
only in recent years that these ingredients have begun to restore life to this
important and exciting area of engineering.

But I feel that more needs to be accomplished. Various aspects of
mechanical, electrical, and structural design, for example, should be
introduced in certain pilot courses, and the content of these premier courses
taken earlier must be integrated into the various design sequences. I perceive
no reason why problems in mechanical design analysis, for instance, ought
not to be introduced as examples in courses prerequisite for a major course in
this subject. If this plan were followed, advanced problems and computer-
aided applications could be studied in a more carefully planned design
curriculum that draws materials from virtually every previous fundamental
course in the student’s program, namely, statics and dynamics, solid and fluid
mechanics, thermodynamics and heat transfer, vibrations and controls, cir-
cuits and fields, and so on. Consequently, I have chosen for illustration several
examples and problems that illustrate simple introductory applications of
kinematics and dynamics in analysis of some problems in mechanical design.
It is my hope that this book may provide engineering students with solid
mathematical and mechanical foundations for future advanced study of topics
in mechanical design analysis, advanced kinematics of mechanisms and
analytical dynamics, mechanical vibrations and controls, electomagnetics and
acoustics, and continuum mechanics of solids and fluids.
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The Contents of This Volume

In any treatment of a classical subject like mechanics, it is difficult to
know with certainty what may be new or what is simply an unfamiliar,
rediscovered result. On the other hand, a fresh approach usually is not hard
to spot; and I believe the reader may find many fresh developments within
these pages. The division into kinematics and dynamics, though not unique to
this text, is uncommon. Yet this division surely is as logical and pedagogically
natural as the separation of statics from dynamics found in virtually every
elementary book I have seen.

Volume 1: Kinematics, concerns the geometry of motion from its basic
definition for a particle through the general theory of motion of a rigid
body and of a particle referred to a moving reference frame. Rectilinear
motion, commonly covered in general physics and elementary mechanics,
is reviewed only indirectly by illustrations in the text and in assignment
problems, so the work herein begins with the spatial description of motion in
three dimensions. The reader will find here a consistent, logical, and gradual
building of well-known kinematical concepts, theorems, and formulas, begin-
ning from the definitions of motion, velocity, and acceleration of a particle in
Chapter 1: Kinematics of a Particle, and extending to the beautiful general
relations for the velocity and acceleration of a material point referred to a
moving reference frame presented in Chapter 4. And there is much in between
that is novel.

The use of singularity functions appears often these days in a good first
course in the mechanics of deformable solids, and certainly the subject is
useful in courses in mechanical vibrations and electrical circuits, for example.
However, I know of no source that provides a thorough and elementary
introduction to singularity functions with applications to problems in
kinematics. These topics are presented at the close of Chapter 1. Illustrated by
several elementary examples, this treatment provides the student with power-
ful tools to treat discontinuous motions common to many mechanical
systems. Therefore, this study shows another useful and important application
of singularity functions at an elementary level.

In Chapter 2: Kinematics of Rigid Body Motion, the construction begins
with the derivation of the finite rotation of a rigid body about a line and leads
ultimately to the fundamental equations for the velocity and acceleration of a
rigid body point in terms of the translation and rotation of the body. This
unusual approach, in my opinion, provides the clearest and most natural way
to arrive at the proper description of the angular velocity and angular
acceleration vectors for a rigid body. The chapter includes many worked
examples and applications; and it closes with a discussion of the theory of
instantaneous screws, including a description of the graphical method of
instantaneous centers for a rigid body.
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The heuristic and intuitive introduction in Chapter 2 to the elegant
primary theorems of Euler and Chasles on finite displacements of a rigid body
and the rule of composition of several rotations is expanded analytically in
Chapter 3: Finite Rigid Body Displacements. The proofs of these theorems
use elementary properties of matrices and tensors. Tensor algebra is
introduced to simplify the description of a finite rigid body rotation in terms
of the rotation tensor, which is the key to understanding Euler’s theorem, the
composition rule for several rotations, and Chasles’ elegant screw theorem. I
know of no other book where one may find a similar treatment of these
theorems and their applications. The coordinate invariant construction of the
axis and angle of the equivalent Euler rotation given by the simple
equations (3.75) and (3.76) provides the essentially unique solution of the
eigenvalue problem expressed by (3.88) for the Euler rotation matrix. The
simple component equation (3.80) for the unique Euler axis of rotation is not
usually found in mechanics texts. Some of these results are buried in the well-
known work of Gibbs; but nowhere do I recall having seen the easy, coor-
dinate invariant derivation of (3.146) for the location of the screw axis of a
general finite rigid body displacement.

In addition, the transformation laws for vector and tensor components
are derived and illustrated in some introductory examples in Chapter 3. We
return to these rules again in Volume 2, where some further important
properties of symmetric tensors are studied and applied to characterize the
rotational dynamics of a rigid body. The use of the tensor representation
theorem to study the composition of several finite rotations and to represent
the composition of an arbitrary rotation in terms of the classical Euler angles
also is carefully described. Many examples, useful applications, and problems
for further study also are provided.

The time rate of change of a vector referred to a moving frame, the fun-
damental kinematic chain and composition rules for several angular velocity
and acceleration vectors, and the elegant basic equations for the absolute
velocity and absolute acceleration of a particle referred to a moving reference
frame are carefully developed in Chapter 4: Motion Referred to a Moving
Reference Frame and Relative Motion. The composition rules for angular
velocity and angular acceleration appropriate to multiple reference frames are
thoroughly and carefully developed. These important results have varied and
useful applications in the study of motion of several connected, independently
rotating rigid bodies such as occur in the study of robotics and mechanisms.
The notation introduced herein to describe rotational chains, in my
estimation, is simpler and less awkward than any used elsewhere in the
current literature. Motions referred to cylindrical and spherical reference
frames in terms of corresponding curvilinear coordinates are derived as special
applications of the aforementioned basic relations for the absolute velocity
and acceleration. Many examples and applications demonstrate use of all of
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the concepts and formulas. It is emphasized that the results derived in Chap-
ter 4 include as particular cases virtually all of the fundamental equations
encountered throughout the text.

The final section in Chapter 4 concerns special advanced topics that
provide preparation for advanced studies in kinematics of rigid body motion
and in continuum mechanics of solids and fluids. The time rate of change of a
tensor referred to a moving reference frame is derived; and an elementary
introduction to frame-indifferent transformations, especially useful in con-
tinuum mechanics, is presented. The volume ends where advanced texts on
theoretical kinematics of a rigid body and continuum mechanics often begin.
A survey of other topics not mentioned above is provided by the table of con-
tents below.

In writing this book, I have appealed over many years to numerous sour-
ces, especially for guidance in selection of appropriate problems. While I do
not necessarily subscribe to their approach to mechanics, some of the referen-
ces that I found particularly helpful are listed at the end of each chapter,
usually with annotations to describe the substance of the work and to identify
specific chapters that may be consulted for collateral study. It is impossible to
be precise in citing my specific use of any source, and I apologize if I may
have overlooked or forgotten a particular reference. There are, however, two
books that I have always found more useful than many others for their
excellent problems, and several of the examples and exercises in this book,
though redesigned and cast in different language, have originated in some
measure with these texts. These are the books by Professors James L. Meriam
and Irving H. Shames. However, so far as I am aware, the treatment of
problems provided herein usually is quite different and more thorough than
found in other comparable sources known to me. Nevertheless, by consulting
the listed references or their own favorite books, both the teacher and the
student should be able to supplement the many examples and problems to
meet their special needs.
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Volume 1

Kinematics

The Geometry of Motion

I cannot too strongly urge that a kinematical result is a result valid
forever, no matter how time and fashion may change the “laws” of
physics.

Clifford A. Truesdell,
The Kinematics of Vorticity




Kinematics of a Particle

Mathematics deals exclusively with the relations of concepts to each
other without consideration of their relation to experience. Physics too
deals with mathematical concepts; however, these concepts attain physical
content only by the clear determination of their relation to the objects of
experience. This in particular is the case for the concepts of motion, space,
time.
I believe that the first step in the setting of a “real external world” is
the formation of the concept of bodily objects and of bodily objects of
various kinds.
Albert Einstein,
Essays in Physics

1.1. Introduction

Dynamics is the branch of analytical mechanics devoted to the study of
the motion of bodies and the forces and torques that may produce it.
However, since geometric considerations play a principal role in dynamics, we
shall consider initially only the purely geometrical aspects of motion. The
theory of motion without regard to the agents that produce it is called
kinematics. Kinematics is the geometry of motion. Thus, in this chapter we set
the stage for future developments by making precise the idea of motion and its
relation to velocity and acceleration. These definitions subsequently are
applied to describe the general motion of a material point in terms charac-
terized by the geometry of the curve along which the point moves. After the
basic kinematical ideas are explored thoroughly for a rigid body in Chapters 2
and 3 and for moving reference systems in Chapter 4, we shall proceed to
investigate the relation of forces and torques to the motion of bodies. Let us
begin with a discussion of some primitive terms needed in our work.

3



4 Chapter 1

1.2. Primitive Terms

It clearly is impossible to define everything. One term is defined by other
terms, which are defined by others, and so on; but eventually we must stop at
some still undefined, primitive term whose interpretation is left to our intuition
or to our experience, psychological or otherwise, in relation to the real world
and to the context in which the term is used. In classical geometry, for exam-
ple, “point” is an undefined term, whereas the word “line” is defined as a con-
tiguous set of points. A dictionary, on the other hand, tells us that a “point” is
“a dimensionless geometrical object having no property but location.” But
what meanings shall we assign to the terms “dimensionless” and “location”?
Searching the pages, we shall find that “dimensionless” means “without
length, width, or height”; and we may add intuitively that “no property but
location” implies that a “point” also has no smell, taste, or color. And if any
of these terms may be unclear, we continue our march through the lexicon
until, finally, our intuitive or psychological needs are satisfied by seemingly
more concrete terms, and our understanding of the still primitive, abstract
term “point” somehow is rendered more familiar. Thus, we come eventually to
perceive the original empirical meaning of certain undefined terms. In any
event, the meanings of the primitive terms of any subject ultimately are deter-
mined by the use we make of them. In fact, from birth, we learn the meanings
of most words in our language in just this way. It is not unusual, therefore,
that we must begin our study of mechanics by the enumeration of some
primitive terms.

A material object, such as an electron, a ball, a river, an aircraft, a planet,
etc. is called a body. More abstractly, a body 4 is defined as a set of material
points P called particles; we write 4 = { P}. Of course, any part of a body, like
a bucket of river water, or any collection of discrete material objects, like the
fragments of an exploded shell, is also a body. Thus, a body, like the line of
elementary geometry, is a set of points, but it differs in that its points need not
be connected. A set of separated particles usually is referred to as a system of
particles, and a contiguous set of material points often is called a continuum.
Notice, on the other hand, that a particle, like the point of Euclid’s geometry,
is a primitive, undefined term that is to be interpreted in the context of its
application. Although we shall picture a particle as the familiar geometrical
point object, it must be understood that they are not the same thing. A speck
of pepper, for example, may be identified as a particle. We all know, of course,
that it has properties other than location: it has a color, it makes you sneeze,
and it tastes bad when consummed alone. But these additional characteristics
are unimportant to the study of the motion of a particle of pepper; rather,
only its material content is considered relevant. A material point has mass; a
geometrical point does not.

Mass is one of the primitive concepts of dynamics that distinguishes
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classical mechanics from classical geometry. Its introduction stems from the
fact that matter exists in varying degrees of concentration or distribution in
the universe. Thus, mass is identified as a positive scalar measure of the
material content of a body. The weight of an object, which will be defined
precisely later on, is not a suitable measure of its material content, for the
weight of a man standing on the surface of the Moon is 1/6 his weight on
Earth, yet the material of which he is made is certainly the same and exists in
the same bulk. Total volume of an object is not suitable either. We could pack
different amounts of matter, like foam rubber, into the same space; but the
mass (per unit volume) would differ. The mass of a body is a positive number
that measures, relative to some assigned standard reference mass, its invariant
material content.

Length and time are primitive concepts. The concept of length as a
positive measure of distance has its foundation in classical geometry, so we
shall not go into it again here. But what is time? Time is Now; yet Now is no
more. There is a before Now and an after Now. This is the way we charac-
terize time. We say there is a present time, a before the present time, and an
after the present time; there exists an earlier than Now and a later than Now.
This is how we perceive time; but it does not tell us in mathematical terms, for
example, what time is. We employ a clock, any repeatable sequence of events,
to keep track of events that take place relative to a certain reference event,
like the birth of Christ. But a clock does not tell us what time is; rather, in the
same way that a ruler is used to measure length, the distance between two
points, a clock is an instrument that measures and records how many events
have been repeated since the occurrence of the assigned reference event. Time
itself is a primitive concept; it is identified as a numerical measure of the
duration of events—past, present, and future.

Force is a primitive concept of mechanics. We pull on the ends of a string
and make it taut; stretch a rubber band to several times its unstretched length;
bend a straight rod of steel to circular shape; twist our hands; drag our feet;
and when we fall down, it hurts. Winds topple buildings; a ball thrown
upward returns to strike the ground; a magnet moves an iron bar toward
itself or pushes it away without touching it. These actions are the influence of
forces. But they do not tell us what force is. Force is an undefined term—a
primitive concept. However, these experiences teach us that force is a vector
quantity. A force is exerted by one body on another with a certain intensity in
a certain direction—it is identified in mechanics as a vector measure of the
push—pull action between pairs of bodies in the universe.

The primitive terms introduced here will be joined together in what
follows; and other basic concepts will be introduced as the need arises. Mass,
force, and time are primitive terms that distinguish the analytical structure of
classical particle mechanics from classical Euclidean geometry. The concepts
of force and mass are essential only to dynamics, so we shall not encounter
these specifically until much later on; on the other hand, the concepts of par-



6 Chapter 1

ticle, length, and time are required presently to study the kinematics of a par-
ticle. We shall see that these three basal concepts are intimately related in the
idea of motion.

1.3. Motion and Particle Path

To locate an object in space, we need a reference system. The only
reference we have is other objects. Therefore, the physical nature of what we
shall call a reference frame is an assigned set of objects whose mutual distan-
ces do not change with time—at least not very much. For example, the walls
of a room, the rotating structure of a carrousel, the cabin framework of a
spacecraft, or the remote stars may serve as a frame of reference. It is only
necessary that the distance between the objects that define the frame, namely,
the walls, the structure, the framework, or the stars and so on, do not change
to within the accuracy that distances are being measured, during the time that
the frame is in use.

For analytical purposes, our definition of a frame must be more precise,
easy to use, and correspond to the physical idea of an assigned set of objects.
Therefore, we define a three-dimensional Euclidean reference frame ¢ as a set
consisting of a point O of space, called the origin of the reference frame, and a
vector basis {e;} = {e,, e,, e;}. That is, ¢ = {O; e,;}. We shall require for con-
venience that the basis is an orthonormal basis, ie., a triple of mutuaily per-
pendicular unit vectors. A typical reference frame is shown in Fig. 1.1.

The spatial location of a particle P in the frame ¢ at time ¢ is given by
the position vector x,, of P from O. Of course, as time goes on the place
occupied by P generally will vary. The time sequence of positions of P in ¢ is
called a motion of P relative to @, and it is defined by the equation

x=x,(P, 1), (1.1)

in which x is the place in frame ¢ occupied at time ¢ by the particle P in its
motion relative to ¢, as shown in Fig, 1.1. The locus .# of places occupied by

Place occupied by P at time t
Present location of P

Figure 1.1. A motion of a particle P
relative to the frame ¢ = {O; e, }.
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P in the motion (1.1) is called the path or trajectory of P. The place x, that P
occupies along its path at some instant 7 =1t,, say, which we may sometimes
consider as the initial instant t,=0, is determined by the motion (1.1):

Xo =X, (P, Io). (1.2)

When the particular choice of ¢ is clear, as it is when only one frame is being
considered, for the sake of simplicity we shall descard the subscript ¢ and
write (1.1) and (1.2) as

x =x(P, 1), (1.3a)
Xo=X(P, ty). (1.3b)

The generic basis {e,} used to define the reference frame ¢ may be any
convenient vector basis. Frequently, though certainly not always, we shall
identify {e,} as the familiar rectangular Cartesian basis {i,} = {i;, i,, i3} with
i; =1, i,=j and iy =k, as usual. It is understood that different symbols ¢, ¥,
@, u, etc. may be used to name the reference frame to avoid confusion with
other quantities that one or more of these same symbols may be chosen to
represent. However, because of frequent use of ¢ as a frame symbol, we shall
reserve the symbol ¢ for use exclusively as an angular placement. Also, for
brevity, we shall often write e, for the set {e.}.

The foregoing ideas are illustrated in the following example.*

Example 1.1. Let the motion of a particle P relative to an assigned Car-
tesian reference frame ¢ = {O;i,} be given by the following position vector
function of time #:

X(P, t)= R[cos wti+sinwtj]+ Ak, (1.4)

where R, w, and A are constants and {i;} = {i,j, k}, as remarked above.
Notice that at =0 we have from (1.4) and (1.3b)

Xo=X(P, 0) = Ri. (1.5)

This is the place relative to ¢ occupied by the particle P initially. Its place at
time ¢ =2 units, say, is given by

X, =X(P,2)=R[cos 2w i+ sin 2w j] + 24k.

Specific measure units for ¢+ will depend on the units assigned to w and A, or
conversely.

* The elements of vector algebra are reviewed in Appendix A, Section A.1.
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L

Figure 1.2. The path of a particle
having the motion (1.4} is a cir-
cular helix.

Of course, in frame ¢ the place x occupied by P always may be written in
terms of its elementary Cartesian scalar components x, y, z:

x=x(t)i+y(t)j+z() k. (1.6)

Equating coefficients of base vectors in (1.6) and (1.4), we find that the time-
parametric equations that define the path of the particle in ¢ are given by

x(t)= Rcos wi, (1.7a)
y(1)=Rsin wt, (1.7b)
z(1)= At (1.7¢)

In view of (1.5), it is now clear too that the Cartesian coordinates of P in its
initial position are x,=x(0)=R, yo=p(0)=0, z,=2(0)=0. We see from
(1.7) that x*> + »> = R?, which is the equation of a circle in the xy plane. Thus,
the trajectory of P lies on a circular cylinder perpendicular to the xy plane. As
shown in Fig. 1.2, the trajectory described by (1.7) is a circular helix, a curve
characteristic of the threads of a screw. We see that when the particle has
completed one revolution about the cylinder axis, it has also advanced some
distance p along that axis, as shown in Fig. 1.2. This unit advance per turn is
called the pitch of the helix. We recall that a screw that has 10 threads per
centimeter (cm) of its length, for example, advances one millimeter (mm) in
one revolution, so its pitch is | mm or 0.1 cm. Notice also that wt = 6(r) is the
angle through which the particle has turned about the k direction in time ¢, so
the time © required to complete one turn of 2x radians about the cylinder axis
is given by wr=2m. Thus, (1.7c) shows that the pitch is given by
p=z(1)= At =2nAd/w. 1t follows, therefore that the constant 4 depends on
the pitch p of the helix and the angular frequency of rotation w. Angular fre-
quency will be discussed further on.
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1.4. Velocity and Acceleration

The velocity relative to ¢ of a particle P at time ¢ is defined by the time
rate of change in ¢ of the position vector (1.1) or (1.3a):

_ax(P, 1)

V(P =%=—2. (1.8)

The magnitude v=|v| of v is called the speed of P. We recall that
|¥| = (v-v)"2 The differentiation with respect to time often will be abbreviated
by use of a superimposed dot, as indicated in (1.8). Of course, since we are
following the particle in its motion relative to ¢, neither the identity of the
particle P nor any aspect of the reference frame varies with the time. Later on,
we shall encounter circumstances where we wish to determine the velocity of a
particle relative to a second frame, starting from an equation for the motion
relative to the first frame, when the two frames are moving relative to each
other; and, in that case, the origin and base vectors of the designated moving
frame will vary with time.

The acceleration relative to ¢ of a particle P at time ¢ is defined by the
time rate of change in ¢ of the velocity vector (1.8):

av(P, t)

a(P, t)=vV(P, t)= y

(1.9)

Substitution of (1.8) into (1.9) gives an equivalent relation in terms of the
position vector:

d?x(P, 1)

a(P,t)=xX(P, t)= e

(1.10)

When the position vector is expressed in rectangular Cartesian variables
(1.6), the relations (1.8) and (1.10) relative to a Cartesian frame ¢ = {O;i,}
have the specific forms

VP, 1)=X(t)i+ p(1)j+ 2(2) k, (1.11)
a(P, 1)=3(t)i+ (1) j+ (1) k. (1.12)

The Cartesian form of the velocity vector in (1.11) reveals that the speed of P
is determined by

ds(t

v= (4 g2y =20, (113)

in which we observe that ds = (dx> + dy*> + dz?)'? is the elemental arc length
along the particle path. Thus, we learn that the speed is equal to the rate of
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change of the distance s(t) that P moves along its path. The velocity vector now
may be written as the product of its magnitude v =5 times the unit vector
t=v/v constructed from v itself; thus,

v(P, 1) = it. (1.14)

It is seen from (1.8) that the velocity vector is in the direction of the
infinitesimal particle displacement dx(P, t) along its path; hence, t is a unit
vector tangent at each point to the particle path. It follows that because the
magnitude of a vector is the same in every reference frame, the representation
(1.14) holds in every reference system. The relation (1.14) thus shows that the
velocity of a particle always is tangent to its path in every motion. We shall
return to this later on.

A particle P is said to be fixed or at rest in ¢ if x(P, t) =X, for all times.
It is evident from (1.8) that a particle is fixed in ¢ if and only if v(P, ) =0, i¢.,
when and only when it has zero velocity for all times. On the other hand, a
particle P is at instantaneous rest in ¢ at a particular time ¢, if and only if
v(P, t,) =0 at that instant.

The physical dimensions of v and a, expressed by [v] and [a], are
derived from the length dimension [L] of the position vector x and the time
dimension [7] of the time variable ¢ on the basis of (1.8)-(1.10). Thus,
[v]=[V]=[L/T], [a]l=[V/T]=[L/T*]. Of course, specific dimensional
units will depend upon the choice of units for the fundamental dimensions of
length and time employed in a particular problem. If the length is expressed in
feet (ft) or meters (m) and the time in seconds (sec), for example, then the
velocity will be expressed in ft/sec or m/sec and the acceleration in ft/sec? or
my/sec?. Use of specific measure units will arise only in numerical problems.

Example 1.2. The velocity and acceleration of a particle having the
motion {1.4) are determined by differentiation in accordance with (1.8) to
(1.10). Thus, rclative to the frame ¢, we find*

v=xX(P, t)=wR[ —sin wt i+ cos wt j] + Ak, (1.15)
a=vV(P, 1)= —w?R[cos wti+sin wrj], (1.16)

in which A4 = paw/2n. Although these vectors vary with time, we see that both
the speed, v=(R>w>+ 4%)'?, and the magnitude of the acceleration,
|a(P, 1)| = Rw?, are constant in the helical motion (1.4). Also, at =0, we
have vo = v(P, 0) = Rwj+ Ak and a,=a(P, 0) = —Rw?i, for example. O

We recall from our earlier Example 1.1 that 6(¢) = w¢ defines the time-
varying angle between the two vertical planes that contain the Oz axis and the
radial lines of R and x,, as shown in Fig. 1.2. By definition, the time rate of

* The rules for differentiation of a vector function of a scalar variable are reviewed in Appen-
dix A, Section A.2. Integration is outlined in Section A.3.
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Figure 1.3. A simple mechanical system in which a
small body P is modeled as a particle.

change 6(¢) of any such angular placement 6(t) is called an angular speed.*
Hence, in the last example §(7) = w is the constant angular speed of rotation
of the particle about the positive z axis in ¢. Clearly, [w]=[1/T]=[T"'];
so the dimensional units of @ are expressed in measure units of radians per
unit of time. In abbreviated notation, this would be written as rad/sec or
rad/min, for example.

In the preceding example, we started from a given motion relation and
derived the velocity and acceleration from it. Most of the time, however, we
must obtain the motion relation from other data provided in the problem. Let
us look at an illustration of a simple mechanical system in which the motion
is obtained by construction of the position vector from geometrical con-
siderations.

Example 1.3. The hinged support H of a thin rod of length L to which a
small ball P is attached moves with constant angular speed df(¢)/dt=w on a
vertical circle of radius R as shown in Fig. 1.3. We wish to determine the
velocity and acceleration of the ball as it moves in the plane relative to frame
¥ ={0;1,j} which is fixed in the plane space at O.

Solution. Since the size of P, though unspecified but finite, is apparently
very small compared to the lengths L and R, it is reasonable to model P as a
particle attached to the end point of the rod. Then, in terms of the angles 6
and ¢ shown in Fig. 1.3, the position vector of P in the fixed Cartesian frame
Y is given by

X, (P, t)=x(t)i+ y(t)j=[Rcos 0(¢) + L cos ¢(1)] i
+ [Rsin 6(t)+ L sin ¢(2)] j.

* The angular velocity vector o will be defined carefully in Chapter 2; its magnitude, the angular
speed, has the same physical interpretation illustrated in this simpler intuitive setting.
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Hence, recalling that § =w, we find with (1.8) and (1.9) that relative to
frame s

vy (P, 1)= —(Rwsin 0 + Lé sin ¢) i + (Rw cos 6 + L cos ¢) j,
a, (P, )= —(Rw*cos 8+ L@? cos ¢ + L sin @) i (1.17)
+(— R’ sin 0 — Lg? sin ¢ + L cos @) j.

Here ¢ is an unknown angular speed; hence, ¢ = d@(t)/dr, the time rate of
change of the angular speed, also is unknown. By definition, the time rate of
change of the angular speed is called the simple angular acceleration.* Clearly,
its physical dimensions are [7~2]; and its usual measure units are rad/sec’.
Notice that the same result would be obtained were we to consider, more
precisely, that L was the distance from the support H to the center of the ball
at P, or to any other point in the ball. In this case it makes no difference what
the dimensions of the ball may be. ]

Example 1.4. Determine the velocity and acceleration of the ball P
relative to a moving reference frame p= {O; e, e,} fixed in the wheel of the
device shown in Fig. 1.3

Solution. To find the velocity and acceleration of P relative to a moving
frame u={0;e,} fixed in the wheel at O, we first write its position vector
relative to frame u:

x,(P, 1)=R+ L[cos ¢(t) e, +sin ¢(7) e, ]

where now R is the constant vector of H from O. Hence, with (1.8) and (1.9),
we find relative to frame u

v,(P, t)= L[ —sin §(1) e, + cos (1) e,],
a,(P, )= —L[§sin ¢(1)+ ¢* cos §(1)] e, (1.18)
+ L[ ¢ cos d(1) — ¢*sin (1)] e,.

Notice that in the moving frame y, both e, and e, are constant vectors,
whereas in the fixed frame  their directions vary with the time. Observe also
that in this example the angle ¢ is measured relative to the line of e, fixed in
u, whereas in the last example ¢ was measured relative to the line of i fixed in
Y. Hence, these distinct angles coincide only at the instant when the frames
coincide. Clearly, the frame y is turning with the constant angular speed @
relative to the frame i, so the directions e, and e, coincide with i and j only at
the moment shown in the figure. Comparison of equations (1.17) and (1.18)
shows that even at the moment of coincidence the velocity and acceleration

* The angular acceleration vector @ will be defined later on; in general, its magnitude is not equal
to the magnitude of the simple angular acceleration.
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relative to the two frames differ. We shall learn in Chapter 4 how the
velocities and accelerations relative to different frames moving in space are
related through the rates of change of direction of their rotating basis vectors.

4

Example 1.5. The mechanism shown in Fig. 1.4a consists of a drive
crank 4B that rotates at a constant angular speed & = w, while the arm OBP
oscillates about the hinge pin at O at a varying angular rate f. The slider
block at B is attached to the crank AB by a hinge pin and it drives the arm
OBP. A pinned pair of slider blocks at P allows the assembly to slide in the
arm OBP and in a horizontal guide HP. As AB rotates around the circle
BCD, a cutting tool (not shown) attached to P moves in the cutting stroke
from its extreme right position to its extreme left position while B moves
along the arc DT'C. During the return stroke, the tool is idle; but because B
moves a shorter distance along the arc CGD, the tool is returned to its
starting position in considerably less time. For this reason the device is called
a quick return mechanism. Find the velocity and acceleration of the point P in
& = {0;1i,}, and compare the time required for the return stroke to the time
expended in the cutting stroke.

Solution. Since P is constrained by the horizontal guide, its position vec-
tor in @ is x(P, t) = xi + 44j. Hence, the velocity (1.11) and the acceleration
(1.12) are given by

V(P )=, a(P,1)=ii (1.19)

(b): Problem Geomeury

Figure 1.4. A quick return mechanism.
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We must now express x in terms of the angle « whose variation is known,
using the assigned geometry shown in Fig. 1.4b. By the property of similar
triangles OEB and OHP, we see that

X asiny sin «

4a 2a+acosy 2—coso

wherein y=n—a is used. Hence, x(¢) is expressed in terms of the angular
position a(z):

4a sin a(?)

2 —cos aft) (1:20)

x(1)=

A little patience with the differentiation of {(1.20) and use of (1.19) yields even-
tually

P.1)=4 2cosa—1 ,
VP )= Ao (121a)
,sina(l +cosa),

a(P, 1)= —8aw 7 —cosa)’

(1.21b)

in which @ = g denotes the known constant angular speed of the drive crank.

We note from (1.21a) that P is at its extreme positions when v(P, t) =0.
This happens when cos a = 1/2. Thus, in this design C and D are 60° from the
vertical line AG. This is also evident from the assigned geometry in Fig. 1.4,
Since the 120° arc from C to D through G is one-half as far from D to C
through T, and because w is constant, it is easy to see that the time ¢, required
for the return stroke is equal to one-half the time ¢, expended in the cutting
stroke: t,=1¢,/2. This characterizes the quick return efficiency of this
mechanism.

A graph of the dimensionless cutter velocity v, +~ (4aw) as a function of
the drive crank angle o is shown in Fig. 1.5. The quick change in the velocity

Z =+ Return Stroke Interval

faw 1o z Cutting Stroke Interval

|
7 315 / Figure 1.5. Graph of the dimen-
2
3n - C

sionless cutter velocity as a
function of the drive crank angle
o

™0
e

vp 2cosa—1
Working Interval 4oy (2—cos a)?



Kinematics of a Particle 15

during the return stroke CGD is evident; in fact, the tangent line to the curve
at o =7/3 makes an angle of —37.6° with the a axis. But this rate decreases
rather rapidly during the initial phase of the cutting tool stroke, the tangent
line to the curve at « = n/2 making an angle of —14° with the « axis. During
the actual tool working interval defined by a € [31/4, Sn/4], say, it is seen that
the curve is fairly flat so that the actual cutting operation occurs at a nearly
constant rate.

1.5. Some Basic Classifications of Problems

It is impossible to exhaustively classify all varieties of problems involving
position, velocity, and acceleration as functions of time; but there are three
broad groups of problems that deserve special mention as follows:

Group I: Given x(P, t), find v(P, t), a(P, ?).
This is the basic problem that we have studied above. The solution is

explicitly provided by the defining equations (1.8)-(1.10):

v(P, t)=de£’t—), a(pP,t)=

dv(P, 1) _ d&x(P, 1)

7 i (1.22)

The remaining groups are varieties of this type.
Group 2: Given v(P, t), find a(P, t), x(P, ?).

The acceleration is determined from its definition (1.9): a(P, t) =V(P, t). The
position vector is found by integration of the differential equation
dx (P, t)/dt =v(P, t) by separation of the variables x and ¢ as indicated below:

[“ax(P.y=x(P,t)—xo=| WP, 1) at,
to 1
wherein x, = x(P, t,) is the place occupied by P at any given instant ¢,. Thus,
x(P, z)=x0+j v(P, 1) dt. (1.23)
to
Group 3. Given a(P, 1), find v(P, t), x(P, t).
To determine v(P,¢), we must integrate the differential equation

dv(P, t)/dt =a(P, t) by separation of the variables v and ¢ as indicated below:

[“avp, n=ve, z)—v0=f' a(P, 1) dt:
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that is,
(P, z)=v(,+fr a(P, 1) d, (1.24)

0

in which v, =v(P, t,) is the value of v(P, r) at any given instant ¢,. Now that
v(P, t) is known, the rest of the problem falls into group 2, and x(P, 1) is
determined by (1.23).

Let us observe that in any problem in which the velocity is known, the
distance traveled by the particle along its path is determined by the differen-
tial equation (1.13) for the speed. We find by separation of the variables s
and ¢

s(z)=f o(t) dt, (125)

0

in which the distance s(¢) is measured along the path from the place occupied
by the particle at the time ¢,.

Finally, we recall that for a time-varying angular placement 6(¢), the
angular speed w and the simple angular acceleration o are defined by

w=001), a=0, (1.26)

respectively. When @(?) is given, the angular speed may be found from the
second of (1.26) by use of the method of separation of variables; we obtain

13
(u(z)=w0+j @(t) dr, (1.27)
)
in which w,=w(t,) denotes the angular speed at the instant ¢,. A second
integration delivers the angular placement:

0(1) =00+ | (1) s (1.28)
4]
wherein 6,=0(1,) is the angular placement at time f,. Thus, in particular, for
a constant angular speed w = w,, we derive from (1.28) the special relation

0(¢) =04 + woll — fo). (1.29)

Let us turn to some sample applications of some of the methods
described above.

Example 1.6. The velocity of a particle P which initially is at the place
Xo= —2ift is given by v(P,?)=6¢%+4rkft/sec. Find the velocity and
acceleration of the particle initially, determine the motion of P, and find its
path. Compute the distance traveled by the particle in one second.
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Solution. It is observed that this problem may be solved by the method
for group 2. The acceleration is given for all times by (1.9); therefore,

a(P, t)=ﬂ£’——9= 124 + 4k ft/sec?. (1.30)

Thus a, = a(P, 0) = 4k ft/sec? is the initial acceleration of P. Clearly, the initial
velocity is vo=v(P,0)=0.

The motion of P, hence the path traversed by P, is determined by the dif-
ferential equation dx(P, t)/dt =v(P, t). Application of (1.23) yields

j' dx(P, ) =x(P, t)l('):'[’ (677 + 40k ) di = (20 + 20°K)]5.
0 0
(See Appendix A, Section A.3). Thus, x(P,1)=x,+22%+2¢’k. With
Xo=X(P, 0) = —2ift, we have, finally, the motion of P:
X(P, 1)=2( — 1)i+ 20k ft. (1.31)

We observe that the motion of P always is in the xz plane.
To determine the path of P, we use (1.6) and (1.31) to obtain the follow-
ing time-parametric equations:

x()=2(=1), 1)=0, z2(t)=2:% (1.32)

Then elimination of the time parameter ¢ yields the standard equation for the
path of P in the xz plane:

2/3
zzf(x)=2<§+1) . (1.33)

Its graph is shown in Fig. 1.6.
It remains to compute the distance traveled in one second. Using the for-

Present_Position

t=1sec P
~ (X 2/3
272(27+” x(P,1)
(0,2 ft)
2.88 ft
Initial Posmon7// X, = -2ift|0 e’ x i

Figure 1.6. Path of a particle having the motion

xX(P, 1) =2(3—1)i+2r%k.
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mula provided for v(P, ¢), we find that the speed of P is given by v(t)=
24(4 + 9t*)'? in accordance with (1.13). Then (1.25) becomes

: L 1 ,
s(1) = L 204+98) 2 di =5 L (4+972)" d(4 + 97
2
. 4 24372 z.
27( + 914§

Hence, the distance traveled by P in the time ¢ is

(1) =55 (4 + 9277 8], (134)

In particular, we see from (1.32) and (1.34) that after one second the particle
is at the place x=0, y=0, z=2 ft shown in Fig. 1.6, and it has traveled the
distance

s(l)=% [13¥2-8]=2.88 ft.

We notice in closing that with the help of the path equation (1.32), the dis-
tance traveled in (1.34) also may be expressed as a function of z:

32
s=$‘(z)=527[(4+§z> —8} O

Example 1.7. An electron E is at rest at the position x,=2i+3j—km
initially. Subsequently, it is observed that the electron has an acceleration
a(E, t)=12¢% — 6tj+ 10k m/sec>. What are the position, velocity, and
acceleration of E after 2 sec? Find the speed of E after 1 sec.

Solution. It is clear that this problem belongs to group 3; thus,
integration of the differential equation

V(E, 1)

—— = a(E, 1) = 120% — 61) + 10k m/sec? (1.35)

in the manner demonstrated in (1.24) yields, with #,=0,
v(E, 1) = v, + 4131 — 3’j + 10tk m/sec.
Since v, = v(£, 0) = 0 initially, we have the result

v(E, 1) = 42% — 313 + 10tk m/sec. (1.36)
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To find x(E, 1), we integrate the differential equation dx(E, t)/dt =v(E, t)
as described in (1.23) noting that presently ¢, =0. Thus,

X(E, t)=x¢+ t*i— *j+ 5%k m.

Substitution of the assigned initial value for x, delivers the result
X(E,)=2+t)i+(3—-1)j+ (5~ 1)km. (1.37)
Finally, we find from (1.35), (1.36), and (1.37) that after 2 sec
X(E,2)=18i—5j+ 19k m
v(E, 2) = 32i — 12j + 20k m/sec,
a(E, 2) = 48i — 12j + 10k m/sec?.

The speed of E follows from (1.36): |v(E, t)| = (16¢° 4+ 9¢* + 100¢2)"/? m/sec;
hence, after 1 sec, v(E, 1) =5%? m/sec. O

More applications of the foregoing methods may be found in the
problems given at the end of the chapter. It is evident that the foregoing
procedures assume that all quantities are expressed as functions of the time.
However, this will not always be so. Later on and in some of the problem
assignments, we shall have to develop additional methods to handle other
situations. An important special procedure is illustrated below.

Example 1.8. A circular disk of radius a is suspended by a slender rod
attached to its center, as shown in Fig. 1.7. The disk is given an angular twist
0, from its natural state in frame ¢ = {O;i,}, and released to perform tor-
sional oscillations. The subsequent simple angular acceleration of a particle P
on the rim of the disk in its rotation about the vertical axis is determined by
the relation § = —K®@, in which K is a known constant that depends on certain
properties of the disk and the rod. (a) Find the velocity and acceleration of P
expressed as functions of 6 alone. (b) Determine the maximum magnitude of

Figure 1.7. Torsional vibrations of a disk.
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the angular speed of P. (¢) Use these results to show how the angular
placement # may be determined as a function of the time.

Solution. (a) The position vector of P in ¢ = {O;i,} is
x(P, t) = a(cos Bi + sin 6§); (1.38)
and the velocity and acceleration of P are determined by use of (1.8) and
(1.9):
v(P, 1) =x(P, t) = al( —sin i + cos 6j), (1.39)
a(P, t)=V(P, 1) = —a(l sin 8 + 0% cos 8) i + a(f cos 0 — 67 sin ) j. (1.40)

Since = —K® is a given function of 8, it remains only to determine 6 as
a function of 0 alone. However, it is evident that because the right-hand side
of this differential equation is a function of 6 rather than the time, the
variables 6 and  cannot be separated as we have done in other examples. We
must first change from the variable ¢ to the variable 6 by use of the chain rule;
this yields

. dodo . dO
=——=0—. 1.41
0 do dt do ( )
Substitution of this expression into the given equation = —K# yields
. df
#—= —K8. 1.42
70 (1.42)

The variables # and 6 are now separable.
Bearing in mind the assigned initial conditions that at 1=0 the disk is
released from rest at 6(0) = 6, so that 6(0) =0, we may now integrate (1.42):

i, . o
[0di=-k[ 0w
0 B
Therefore, the angular speed is determined by
6= +[K(0Z—0*)]""~ (1.43)

The minus sign must be chosen to agree with the initial conditions so that 6(¢)
is decreasing in time during the initial part of the motion. Hence,

0= —[K(02—0%)]'" (1.44)

The sign of @ will not change until § =0 again. It is seen from (1.43) that this
happens when and only when 8= +8,. We recognize 6 = —6, physically as
the extreme angular placement of the particle P at which the disk comes
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momentarily to rest before it reverses its direction to swing back to its initial
position of instantaneous rest at @ = +6,. The sign ambiguity that arises from
use of the chain rule relation (1.41) usually is easily eliminated by a simple
physical or analytical argument of the kind used in this example.

We are now prepared to complete the solution of (a). Substitution of
(1.44) and the given relation for & into (1.39) and (1.40) yields the velocity
and acceleration of P as functions of § alone:

v(P, 1) = —a[ K(02— 0?)]"*(—sin 6i + cos 6j), (1.45)
a(P, 1) =aK[6sin 6 — (A2 —0?)cos 0] i— aK[0 cos 6 + (63— 6%) sin 0] j.
(b) It is seen from (1.44) that § has a maximum magnitude w,,, at
0=0:
Wy = K20, (1.46)

(c) To find 6 as a function of the time, we note that a second
integration by separation of the variables 8 and ¢ in (1.44) yields

¢ do
—KVt=| ——
o (03— 0717

The right-hand side of this equation is easily integrated following a change of
variable defined by 0 = 0, cos  with =0 initially. We find

0 v

— [ (@—0%) an=]" dy=y.

0o 0
Hence, = K"?t. Therefore, we conclude that the angular placement as a
function of time ¢ is given by

0(t) = 0, cos(K't). (1.47)

Finally, let us observe with the aid of (1.46) and (1.47) that the angular
speed also may be expressed as a function of the time:

o(t)=0(t) = —w,,, sin (K*1). (1.48)

The results (1.47) and (1.48) may be used to write the velocity and
acceleration of P as functions of the time. Notice that the sign in (1.48) agrees
with (1.44). O

This completes our study of this problem. Before leaving it behind, let us
examine in more general terms the method used to separate the variables in
(1.42) above.
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Let f(u) be a function of the variable u(r) which depends on the time ¢,
and consider any second-order differential equation of the form

u(t) = flu). (1.49)

This equation always has a first integral for # expressed as a function of w.
Since the right-hand side of this differential equation is a function of u, we
must think of #(r) as a function #(x) depending on «. Then, by use of the
chain rule, it follows that

_ di(u) du(r) __ di

(1) 7 di - (1.50)
and the equation (1.49) may be rewritten as
di
1 & (). (1.51)
du
Thus, separation of the two variables and integration yields
=2 jf(u) du + ¢, (1.52)

wherein ¢, denotes the constant of integration.

This development reveals that the same separation of variables may be
achieved more directly if in (1.49) one replaces ii by du/dt to obtain the first-
order equation

du
2=, (1.53)

and then multiplies through by udf = du to form
udi = f(u) du, (1.54)

in which the variables & and u are separated. It is seen that this is the same as
(1.51), and integration of (1.54) yields (1.52). Both approaches are based on
the chain rule, but the second more direct approach avoids the awkwardness
of our having to think of # as a function u. This integration procedure will be
encountered many times in the solutions of other problems.

1.6. Uniform Motion

The idea of a uniform motion of a particle will be presented below. The
important fact that a motion with constant speed is not necessarily a uniform
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motion will be discussed. Afterwards, we shall study an example of uniform
motion produced by a cam mechanism.

A motion of a particle for which the velocity vector is a constant vector is
called a uniform motion. Since v(P, t)=v,, a constant vector, it follows that a
motion is uniform if and only if the acceleration is zero for all times: a(P, t)=0.
Clearly, if the particle moves with constant velocity, then
a(P, t)=dv(P, t)/dt =0. Conversely, if the acceleration is zero for all times,
then dv(P, t)/dt=0 is a differential equation to be solved for v(P,t). Its
solution by (1.24) is v(P, t) =v,, which is a constant vector.

It is natural to ask: What is the path traced out in space by a particle
whose velocity is constant? It is easy to see from (1.14) that since the velocity
vector at each instant is tangent to the path of the particle, when v(P, t) has
both constant magnitude and constant direction, the path must be a straight
line. We can easily demonstrate this geometrical result.

To demonstrate the answer, we need to find x(P, ¢) to determine the path
of places traced by P as time varies. Given that the velocity v(P, ¢) = v, is con-
stant, the analysis falls into group 2 above. From (1.23), we get

1 t
x(P,t)=xo+J vodt=x0+v0f dr.
1) 41

That is, the uniform motion is described by
X(P, t)=x0+vo(t*t0). (1.55)

This is the time-parametric vector equation of the straight line path of a par-
ticle whose place was x,, at the instant ¢,. The result is shown graphically in
Fig. 1.8. To see this in other familiar terms, let us recall (1.6); note that
Xo=Xoi+ yoj+2z0k and write vy=dai+bj+ck. Then the vector
equation (1.55) may be rewritten as the three scalar equations

x=Xxo+a(t—ty), y=yo+b(t—1t,), z=2zy+c(t—ty).

Reference

Frame ¢ £ Path of P

Figure 1.8. The particle path in a uniform motion is a straight line.
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The standard equations describing the path are obtained by elimination of the
time parameter:
X—x _Y—Yo_Z—Z%

b c

f—ty=

The student ought to recognize this set of equations as the intersection of
planes defining a straight line whose spatial direction cosines are determined
from the components (a, b, ¢) of the constant velocity vector v,,.

We have shown that a particle can move with a constant velocity only if
its trajectory is a straight line. The emphasis on velocity is important because
the velocity vector is constant if and only if both its magnitude, the speed, and
its direction are constant. In a uniform motion, the speed is always constant.
But a constant speed by itself does not constitute a uniform motion because
there are infinitely many paths along which a particle may travel with a con-
stant speed. A straight line is only one of them. An example of another one
studied earlier is the helical path (1.7) for which the constant speed was found
to be v = (w?R*+ 4%)"2 For the given initial data x, and v,, there is one and
only one uniform motion (1.55); but for the same x, and v, there are infinitely
many motions of P for which only the speed is uniform.

Example 1.9. Suppose that the hinge point H of the system shown in
Fig. 1.3 moves with a constant speed v=2m/sec on a circle of radius
R =150cm. What is the magnitude of the acceleration of H?

Solution. The position vector of H in Y ={0;1, j} is given by
x(H, t)=50(cos #i+sin @ j) cm,

where 8(¢) denotes the angular placement of H measured from the fixed ver-
tical line shown in Fig. 1.3. Application of (1.8) to the last equation gives
v(H, 1) =500( —sin @i + cos 0 j) cm/sec. Therefore, after a change of units,
|v| = 506 = v = 200 cm/sec shows that @ =4 rad/sec, which is the constant
angular speed of H about point O in . It is now easy to show with (1.9) that

a(H, t)= —8(cos i+sin # j) m/sec?,

whence follows |a(H, t)] =8 m/sec’. The point H has a constant speed; but
this result shows that its acceleration is not zero because the velocity vector is
changing its direction as H rotates around O. The motion of H is not uniform.

|

Example 1.10. A cam is a mechanical device used to produce a
prescribed motion of another body in contact with it. The cam mechanism
illustrated in Fig. 1.9 is to be designed to control the oscillatory motion of a
push rod so that both its forward motion on 6 € [0, 7] and its return motion
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Figure 1.9. Uniform translational motion of a push rod produced by a constant rotary cam
motion.

on f€[n, 2n] are uniform with the same speed v in each direction over the
entire stroke b, called the rise of the cam. The cam is to rotate with a constant
clockwise angular speed w=0(¢) about an axle at F. Let r(8) denote the
variable radial distance from F to the cam surface at the angle 6 defined in
Fig. 1.9. Find the cam profile #(#) that can produce the desired uniform
motion.

Solution. We need to relate the shape of the cam defined by r(0) to the
prescribed uniform motion condition. Since the motion of the push rod is
determined by the shape of the cam as it turns through the variable angle 6(¢)
about the axle at F, the position vector of the point of contact of the push rod
with the cam at P is given by x(P, )= r(0) i. Thus, with the aid of (1.8) and
w=0, we have

dx(P, 1) _ dr(0)

WP D=—0 0

forall 6e[0,2n]. (1.56)

In particular, during its uniform forward motion, the push rod has the
constant velocity v(P,t)=vi for 0e[0,n]. Upon equating this vector to
(1.56) we get the relation v = wdr(#)/d6, in which both v and w are assigned
constants. Then separation of the variables r and 6 yields

L"m dr(0) == j: d

in which a=r(0) is the value of #(f) when 0 =0. Thus, the shape of the cam
that will produce the desired uniform forward motion is determined by

r(())=a+%0 for 6e[0,n]. (1.57)
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The shape function (1.57) also can be expressed in terms of the cam rise b by
the condition #(x) = a + b; we obtain

3o

W) =a+b  with 2=Y and 0efo,n]. (1.58)
T w

The cam profile is a linear function of 6, the rise being determined by assigned

design conditions for the ratio v/w.

To produce the same uniform return motion with velocity v(P, ) = —oi
on @€ [xn, 2n], it is clear that the cam must be symmetric about the line =0
through F. Nevertheless, let the student show that for the uniform return
motion the other half of the profile is determined by

r(0)=a+b<2—g> on [m, 2xn]. (1.59)

Thus, a cam whose shape is defined by (1.58) and (1.59) converts a con-
stant rotary motion of the cam into a reciprocating, uniform motion of a push
rod that maintains contact with it. This design is used often in automatic
machine tools where cutter blades are to be moved at constant and relatively
slow speeds so that the sudden reversals in the velocity at the beginning and
end of the tool stroke are unimportant in the actual cutting operation. Higher
operating speeds also may be achieved provided that the return spring is suf-
ficiently stiff to maintain the contact between the push rod and the cam. The
sudden jumps that occur in both the velocity and the acceleration at the end
of each stroke will be discussed later on.

1.7. Velocity and Acceleration Referred to an Intrinsic Frame

Thus far our relations for the motion, velocity, and acceleration of a par-
ticle have been applied in situations where a rectangular Cartesian reference
frame was adequate. However, this choice frequently proves awkward. In
some problems it is more convenient to refer the particle motion to a special
moving frame, called the intrinsic reference frame, which follows the particle
along its tortuous route through space. Thus, instead of decomposing the
velocity and acceleration into their usual Cartesian components, we are going
to construct their decompositions into intrinsic components along directions
associated with the path traced by the particle.

1.7.1. Construction of the Intrinsic Velocity and Acceleration

Equations for the velocity and acceleration that are related to certain
natural geometrical features of the particle path often are called intrinsic
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equations. The arc length and the unit tangent vector to the particle’s path are
obvious intrinsic geometrical quantities associated with the velocity vector in
(1.14), for example. Therefore, (1.14) is an intrinsic equation for the velocity.

To derive the general formulas for the intrinsic velocity and acceleration,
it is natural that we should begin by thinking of the motion as a function of
the distance s(¢) traveled by the particle along its path. Let us consider a par-
ticle P moving along an arbitrary path C in space, as shown in Fig. 1.10. At
any instant ¢ its distance along C from any reference point @ on C is s(¢).
Hence, relative to our Cartesian frame @ = {O;i,} in which the usual coor-
dinates of a point are {x,} = (x, y, z), the position vector of the particle may
be written as a function of the time-varying distance traveled along the path:

xX(P, 1) = x(s(2)) = x(s) i + p(s) j + z(s) k. (1.60)

Then with dx(s)=dx(s)i+dy(s)j+dz(s)k, it is seen that dx-dx =ds? the
elemental arc length of the curve. Therefore, the vector dx/ds is a unit vector.
It may be seen in Fig. 1.10 that this unit vector is tangent to the path in the
direction of increasing values of s. Thus, the vector t(s) defined by

_dx_ 3 dxk .
t(S):;i;—kgl -:i-s—lk (1613)
and
tt=1 (1.61b)

is called the tangent vector of C. We must insist that C be continuous without
corners so that t(s) is defined uniquely at each point on C. Recalling that the
scalar components of a unit vector are the direction cosines of the vector, we
see that dx,/ds are the three direction cosines of the tangent to the path at P.
These results are easily visualized for a plane motion, and it may be helpful
for the reader to study the equations (1.61) and Fig. 1.11 in relation to the
previous remarks.

With (1.60) in mind, we see by (1.8) and use of the chain rule that the

For an infinitesimal displacement
Ax of Palong C, | Ax | = As, very
nearly; and in the limit A> Pon C,
dx . Ax
—— =|im —= i H

3 As‘OAs t(s) is a unit
vector tangent to C at P.

Figure 1.10. Motion of a particle along a space curve.
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It is seen from the geometry that

dx %

ek costl,

dx
dy "% X
T sinfl = cos®;

and in terms of its direction cosines,
the unit tangent to C at P is

2 dx,
Tangent line t=cosfi+cosgj =L —— i
o CatP =1 ds

Figure 1.11. Motion on a plane curve.

velocity of the particle may be expressed by v(P, 1) = (dx/ds)(ds/dt). Using
(1.61a), we now obtain

v(P, 1) = it, (1.62)

where § = ds/dt denotes the particle speed. This representation of the velocity
vector is called the intrinsic velocity. We notice that (1.62) is the same result
described earlier in (1.14). We see again that the velocity in every motion is
tangent to the particle’s path.

The acceleration is obtained by differentiation of (1.62). Bearing in mind
the functional dependence of t(s) on s(¢), we find

=2ﬂs_)

av(P,t
P, )=§t+5 7

a(P, 1) (1.63)

where § = d§/dt. Since t(s) is a unit vector, differentiation of (1.61b) yields [see
(A.24) in Appendix A]

dt

t o 0. (1.64)
Hence, C being an arbitrary curve, (1.64) shows that the vector dt/ds is per-
pendicular to t. The same result may be seen in more intuitive terms. Because
a unit vector has a constant length, the only change it can exhibit is a change
in its direction. Since this change can have no component along the invariant
unit length of the vector, it must be perpendicular to it, as shown in (1.64).
Hence, the unit vector t(s) must rotate with changes in s, and dt/ds must be its
rate of rotation. We visualize from Fig. 1.12a that dt/ds =1lim ,,_, , At/4s is
perpendicular to t(s) in the direction of the concave side of the path, the direc-
tion toward which t(s) rotates as s varies.

Let n be a unit vector in the direction of dt/ds whose magnitude we
denote by k. Then, recaliing (1.61a), we may write

dt  d’x

a_dx_ 1.65
as o de " (1.65a)
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Figure 1.12. Geometry in the principal plane of curvature.

with
dt
=5 (1.65b)
and
n-n=1. (1.65¢)

The unit vector n is called the principal normal vector of C. Since the
magnitude x of dt/ds is the rate at which the tangent vector rotates its direc-
tion with respect to arc length as the particle moves along the curve, k is
called the curvature of C. Substitution of (1.65a) in (1.63) yields the basic
equation for the intrinsic acceleration vector:

a(P, t) =5t + xs°n. (1.66)

This completes our derivation of the equations for the intrinsic velocity and
acceleration. However, some additional useful geometrical details remain to
be discussed. Our main results will be summarized afterwards.

1.7.2. Curvature, the Radius of Curvature, and the Intrinsic Frame

The reciprocal of the curvature, denoted by R= 1/«, has a simple and
useful geometrical interpretation that may be readily visualized from Fig. 1.12.
Let us consider the plane defined by the tangent vectors t and t+ At at two
points P and 4 on C separated by an infinitesimal distance 4s. This plane, or,
more precisely, its limit as 4s — 0, is called the plane of principal curvature.
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Now let us construct in this plane lines through P and A perpendicular to C.
The point B where these lines intersect is named the center of curvature. The
circle of radius BP with its center at B is identified as the circle of curvature.
This circle assumes the shape of the curve along a small arc that includes the
point P. We are going to show that this radius is equal to R; hence, R will be
called the radius of curvature.

To see this, let L be a line through P fixed in the plane of principal cur-
vature and making an angle 8 with the tangent at P. We see in Fig. 1.12 that
the infinitesimal angle between the tangents at P and A is 46, so 4s= RA8
and |At| =|t] 40. These approximations become more precise as 4s is made
smaller. In the limit as 4s — 0, we obtain

ol 1 |
‘E=_R’ ‘%[=|t|=1. (1.67)

We now recall (1.65b) and wuse the chain rule to write
K = |dt/ds| = |dt/dB| |dB/ds|. Then substitution of (1.67) yields the important
result

dt
ds

do

ds

_ B 1
= = =%

(1.68)

Thus, as remarked earlier, the curvature x measures the rate of change in the
tangent angle 0 with respect to arc length along C; and it is clear that
[R]1=[x '1=[L]

Because of the manner in which the plane of principal curvature contacts
the path at P, this plane also is called, in more colorful terms, the osculating
plane of C at P. The principal normal vector n is perpendicular to the tangent
of C and lies in this plane. Therefore, the osculating plane is determined by
the vectors t and n.

Finally, it follows from the properties of t and n in (1.61), (1.65), and
(1.68) that the vector b defined by

b=txn=—xR— (1.69)

is a unit vector perpendicular to both t and n. The vector b is named the
binormal vector; it is normal to both C and the osculating plane. The triad
{t,} = {t,n, b} of mutually orthogonal unit vectors forms a basis for a mov-
ing reference frame y = {P;t,}, called the intrinsic frame, which follows the
particle along its path. In terms of the intrinsic basis, the velocity and
acceleration of a particle in a general motion relative to any Cartesian frame
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& ={0;i,} have the simple and useful representations (1.62) and (1.66).
These principal results together with the curvature relations (1.68) are sum-
marized with new numbers in the next section.

1.7.3. Velocity and Acceleration Referred to the Intrinsic Frame

We learned in the last section that the intrinsic velocity is determined by
v=t, (1.70)

where § = ds/dt denotes the particle speed and t is a unit vector tangent to the
trajectory. This shows that the velocity of a particle always is tangent to its
path.

We have also found that the intrinsic acceleration is given by

a = §t+ ksn, (1.71)

wherein §=ds/dt is called the tangential acceleration component and ks° is
named the normal acceleration component. Since the normal component is
directed toward the center of curvature, it also is known as the centripetal
acceleration component. The result (1.71) shows that the acceleration vector of
P lies always in the osculating plane tangent to its path and containing the cen-
ter of curvature. The foregoing description of the intrinsic frame y = {P; t,}
and the intrinsic velocity and acceleration vectors in the osculating plane at P
are illustrated in Fig. 1.13.

Osculating
Plane

Figure 1.13. Description of the
intrinsic reference frame and the
intrinsic velocity and acceleration
vectors in the osculating plane. i i
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The curvature «, or the radius of curvature R, is given by

1

=%

ﬂ
ds

do
ds

, (1.72)

in which @ is the angle between the tangent vector t and an arbitrary fixed line
in the osculating plane. Two easy applications of (1.72) deserve special men-
tion.

(i) Rectilinear Motion. A motion on a straight path is known as a rec-
tilinear motion. The tangent vector on a straight path obviously is a constant
vector; hence, by (1.72), we have k = 1/R=0. That is, a straight line path has
zero curvature, hence an infinite radius of curvature. 1t follows from (1.70) and
(1.71) that in every rectilinear motion in the direction t

v=s5t and a=sit (1.73)

We recall that a uniform motion is a special rectilinear motion with constant
speed; thus, v=3§t=v,, a constant, and a =0, as described before.

(ii) Circular Motion. It is clear that in a motion on a circle of radius r
the tangent vector is tangent to the circle. The principal normal vector at
every point around the circle is directed through the center of the circle, so
this point is the natural center of curvature of the circle described earlier in
Fig. 1.12. Thus, the radius of curvature of a circle is the radius of the circle:
R=1/k=r.

Notice that the same result follows from the last of (1.72) and the elemen-
tary formula s=rf for a circle on which 6 is the angular placement of an
arbitrary radial line from a fixed line through the center. Therefore, we have
§=r6 and § = rf. Substituting these relations into (1.70) and (1.71), we obtain
the special elementary equations for the motion of a particle on a circle of
radius r with angular speed w = # and angular acceleration & = §:

v=rot, a=rdt+ron (1.74)

Finally, it is easy to verify that the tangential and normal components of
the intrinsic acceleration of a particle and the curvature of the path can be
computed from the relations

a,=i=2" (1.75a)
U
a, = xs? =12V (1.75b)
v

. (1.75¢c)
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in which v =§#0. The construction of these results is left as an exercise for
the student. It should be observed that whereas $=|v|, in general §# |a|.
Rather, by (1.71)

lal = [§2 4 k25]"2 (1.76)

We have learned that equations (1.70) and (1.71) are the representations
of the velocity and acceleration expressed in terms of a basis that is moving
relative to an assigned Cartesian frame & = {0;i,}, as shown in Fig. 1.13.
They must not be confused as the velocity and acceleration relative to the
intrinsic frame, for it is clear that the particle has no motion relative to an
observer situated at the origin of that frame. Rather, the relations (1.70) and
(1.71) are representations of the velocity and acceleration of a particle relative
to the assigned rectangular Cartesian frame @ but referred to the moving,
intrinsic frame . Said differently, the intrinsic velocity and acceleration com-
ponents are the instantaneous projections upon the moving, intrinsic frame
of the velocity and acceleration as seen by an observer stationed at O in frame
@. The observer fixed at O first determines v and a and afterwards projects
them instantaneously upon the axes of the intrinsic frame simply as a matter
of convenience. As a consequence, he always finds (1.70) and (1.71). The
relation between motion referred to an arbitrary moving reference frame and
motion relative to it will be discussed in greater detail in Chapter 4.

To see this more graphically, let us return to our earlier example of the
torsional oscillations of a circular disk. The motion, velocity, and acceleration
of a particle P on the rim of the disk are given by (1.38), (1.39), and (1.40)
relative to the fixed Cartesian frame ¢ = {O;i,} shown in Fig. 1.14a. Guided
by our previous discussion of motion on a circle, we know that the intrinsic
frame = { P; t,} has the instantaneous orientation shown in Fig. 1.14a. We
want to show that the intrinsic velocity and acceleration components are the

(a) (b)

Figure 1.14. Torsional oscillations around a circle referred to the intrinsic frame.
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instantaneous projections upon the moving, intrinsic frame  of the velocity
and acceleration relative to frame ¢. The relevant problem geometry is
illustrated in Fig. 1.14b. It is seen that the instantaneous projections of the
unit vectors i and j upon the intrinsic directions t and n are given by

i=sin 6t —cos O n, j= —cosf@t—sinfn (1.77)

Substitution of (1.77) into (1.38), (1.39), and (1.40), and use of a familiar
trigonometric identity yields the results desired:

X(P, t)= —an, (1.78a)
v(P, t)= —ablt, (1.78b)
a(P, 1) = —abt + ab’n. (1.78¢)

These equations still describe the motion, velocity, and acceleration of P
relative to the fixed Cartesian frame ¢ = {0;i,}, but the vectors are now
referred to the moving, intrinsic frame = { P; t,}. Their new simplicity is
evident.

Of course, the equations (1.78b) and (1.78¢) may be derived directly from
(1.74) for the circular motion of a particle. We must remember, however, that
0 in Fig. 1.14a initially is decreasing in time. Therefore, with w = —8, &= —0,
and r=gq, it is seen that (1.78b) and (1.78¢) follow easily from (1.74).

1.74. Some Applications of the Intrinsic Velocity and Acceleration

Some examples that illustrate various methods used in the analysis of
problems involving intrinsic quantities will be studied next. The formula for
the curvature of a plane curve will be reviewed in the solution of the first
example, and the formula will be used in two others that follow. Finally, the
motion of a particle on a helix will be revisited to find the intrinsic velocity
and acceleration; and some interesting properties of this useful curve will be
discussed.

Example 1.11. A particle moves along a parabolic path y =kx” in such a
way that the component X is a constant C in @ = {O; i, }. What are the intrin-
sic velocity and acceleration of the particle? Assume that k> 0.

Solution. To obtain explicit formulas for (1.70) and (1.71), we need to
find §, § and x. Since x = C, the equation of the path yields y = 2kxx = 2Ckx.
Then with § = (x> + y?)"? we obtain

§=C(1 +4k*x*)', (1.79)
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A second differentiation yields
§=4k>C?x(1 + 4k*x*) ', (1.80)

It remains to determine the curvature.

To derive the equation for the curvature of any smooth plane curve
y=y(x), we recall (1.72) and introduce the angle 6 that the tangent to the
curve makes with the x axis, as shown in Fig. 1.11. Then tan 0 = dy/dx and
differentiation of each term with respect to s yields

T dxds

2 2
d d 29=d_9(§> i ;i(dy) &y dx

—a—gtan 0=$sec s\ p

Equating the last terms in these expressions and using the relation
ds? = dx? + dy?*, we find df/ds. Then by (1.72) we get, finally,

do

as| _ d*y/dx?
ds

[+ (dy/ax)’T?

This formula gives the curvature for any given smooth, plane curve y = y(x).
The derivation of the curvature formula in the case when the plane curve is
described by x=x(y) is left to the reader. We find that the curvature of a
plane curve is determined by

B d*y/dx?

* T @ T ()
B d*x/dy?
=TT+ @) (1510)

In particular, for the parabola y =kx? we find dy/dx = 2kx, d*y/dx* = 2k.
Using these values in (1.81a) and recalling that £ > 0, we obtain

K = 2k(1 + 4k2x2) 32, (1.82)

Thus, collecting the results (1.79), (1.80), and (1.82) in (1.70) and (1.71), we
find the intrinsic velocity and acceleration of the particle:

v=C(1 +4k*x?)'2t,  a=2kC*(1+4k>x?)~V2(2kxt+n). (1.83)

Let the student consider what happens to these results if k <0.
Since the path is known, it is an easy geometrical problem to express t
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and n in terms of i and j whenever this may be necessary. Unless it is specified
that the results must be expressed in & ={0;i,}, it is understood that the
answers may be left in terms of i = {P; t,} without our having to write the
vectors t, as functions of i,. A sample case where this is required will be
illustrated in Example 1.13. 0

Example 1.12. Suppose that a particle P moves on the parabola y = kx?
with a constant speed § =5 cm/sec and passes the point (1,1) in @ = {0;1i,j}.
What is the greatest acceleration that the particle P experiences on its path?
What is the radius of curvature at the point (1, 1)?

Solution. In order that P may pass the point (1, 1) on y=4kx? it is
necessary that k = 1; hence, y = x? is the path of interest. Since § =5 cm/sec is
constant, § =0 and by (1.71) we have

a=25xn. (1.84)

Thus, a is greatest where k is greatest, i.e., where R is least. Of course, we
expect intuitively that this occurs at (0, 0). The result may be established by
use of (1.82). For the case k=1, we obtain

R=1(1+4x?)*2. (1.85)

This formula shows that R is least at x=0. Hence, R,,,,=1/2cm and
Kmax =2cm~'. The solution, by (1.84), is a_,, =50n=>50icm/sec’ at the
origin (0, 0). The radius of curvature at (1, 1) is found from (1.85); we get
R=5"7+2cm, O

Example 1.13. A small guide pin P is attached to a telescopic arm OP of
a bell crank mechanism which is hinged at . The pin must move in a
parabolic track as shown in Fig. 1.15a. At point 4 it has a speed of 10 ft/sec

—;.;Ezﬁﬁi Bell Crank

(a} (b}: Problem Geometry

Figure 1.15. Pin motion in a bell crank mechanism.
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and a rate of change of speed of 20 ft/sec’ along the track. What is the
acceleration of the pin at point A in the Cartesian frame &= {F;i,} in
Fig. 1.15b?

Solution. The standard equation of the parabolic track shown in
Fig. 1.15 is x=cy* Since the curve contains the point (4, 4), the constant
¢=1/4 and the actual path equation is

4x =2 (1.86)

The problem data being expressed in terms of intrinsic quantities suggest
use of the intrinsic representation for the acceleration. With § = 10 ft/sec and
§=20 ft/sec?, the acceleration given by (1.71) is a = 20t + 100«xn at 4. The cur-
vature of the path (1.86) at 4 may be determined by (1.81b). Using (1.86), we
evaluate

dx y dx 1

“x_y o ax_ o 1.

dy 2 dy* 2 (187)
At the point 4 = (4,4) we have dx/dy =2, d*x/dy* =1/2; and by (1.81b) we
find k= \/3/50. Therefore, the acceleration at A4 is given by

a=20t+2./5n ft/sec?. (1.88)

But (1.88) is referred to the intrinsic basis whereas the solution is required in
the Cartesian basis. Therefore, a change of basis from t, into i, is needed.
It is clear from the geometry shown in Fig. 1.15b that

t=cosai+sinaj, n=sinoi—cos «j, (1.89)

wherein a is determined by tan a = dy/dx = 2/y. Evaluating this at A = (4, 4),
we get tana=1/2; and from this result we determine sina= 1/\/5,
cos oc=2/\/§. Now (1.89) may be written as

t:§(2i+j), NE] (1.90)

n=-%-(i-2j),

Substitution of (1.90) into the acceleration (1.88) yields

a=2[1+4./5]i+4[/5—1]jft/sec’. (1.91)
This is the acceleration of the guide pin at point A4 in the Cartesian frame &.
(See Problem 1.53.) O

Example 1.14. The helix is a basic curve found in the design of various
kinds of machines used to move solid or granular materials through a screw
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feed or sorting hopper device. Helices also are used in design of impeller
blades of certain air and water pumps, and for drills and screw drive systems.
Therefore, it is useful to understand some of the basic geometrical properties
of a helix. It is known, for example, that a helix has the unique characteristic
that its tangent at each point makes a constant angle with a line parallel to its
axis. This property is useful in problems concerning a helical motion similar
to the rotation and translation of a nut on a threaded shaft. Establish this
result for the helix defined by (1.4). Find the intrinsic velocity and acceleration
in this motion.

Solution. We wish to show that the angle y between the axial unit direc-
tion k and the unit tangent vector t to the helix described by (1.4) is a con-
stant. Let us recall equation (1.15) for the velocity vector in the helical motion
(1.4). Then, according to (1.70), the tangent vector to the helix is given by

t =¥/v = [ Rw(~sin wt i + cos wt j) + Ak /(R*w? + A?)'7, (1.92)
wherein A4, R, and w are constants. Hence, the speed also is constant:
v=35=(Rw*+ 4}~ (1.93)
It follows from (1.92) that the angle between k and t is given by
k-t=cosy=A(Rw?*+ 4%)~ "2, (1.94)

which is a constant. Thus, the tangent at each point on a circular helix makes a
constant angle with its axis. This result is more useful than (1.94) suggests.
More generally, the tangent line property shows that when a helix is rolled on
a plane, in one revolution its tangent traces a straight line that forms the
hypotenuse of a right triangle of altitude p, the pitch of the helix, and base
27R as shown in Fig. 1.16. This triangle is called the pitch triangle. When a
particle moves on a circular helix, it rotates through an angle wt = 6(r) about
the helix axis, as described in Fig. 1.2, and it traces in the xy plane a circular
arc of length RO(r) as it advances a distance z(¢) along that axis. We see from
the pitch triangle that tany=2nR/p= R6(1)/z(¢). Hence, the axial advance
along a circular helix is proportional to the angle of rotation about its axis,

2nz(t) = pO(2); (1.95)

2 x Nﬁ’l?\

b4 ; p=zir)

t Pl
i

27R Figure 1.16. Pitch triangle for a circular helix.
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and the invariant tangent angle y of a circular helix is determined uniquely by
the ratio of the circumference of its base circle to its pitch:

tan y =27nR/p. (1.96)

These results will now be applied to find the intrinsic velocity and acceleration
for the helical motion (1.4).

We recall from (1.4) or (1.7) that z(¢t)= At and 6= wt. Use of these
relations in (1.95) yields 4 =wp/2n, which is the same result derived dif-
ferently at the close of Section 1.3. Substitution of this equation into (1.93)
and use of (1.96) gives

p 21172
— — = . 1-
v Rw[1+(2nR) ] Rw cscy (1.97)

Since the speed (1.97) is a constant, (1.71) reduces to a = xv’n. But this
must be the same as (1.16):

a=xv’n= —Rw?*[cos wt i+ sin wtj]. (1.98)
Therefore, it follows that
|a| = kv? = Rw? (1.99a)
and
n= —cos wti— sin wij. (1.99b)

Substitution of (1.97) and (1.99a) into (1.70) and (1.71) yields the intrinsic
velocity and acceleration in the helical motion (1.4):

v(P,1)=Rwcscyt,  a(P,t)= Rwn, (1.100)

in which t and n are given explicitly by (1.92) and (1.99b). The principal nor-
mal vector n at each point along the helix is directed perpendicular to the
helix axis k. Hence, the osculating plane of t and n slides along the helix at the
constant angle y defined by (1.96).

Finally, let us observe that the curvature may be found from (1.99a):
k = 1/p = Rw*/v?, where p denotes the radius of curvature. This may be sim-
plified further by use of (1.97) and the pitch triangle. We find the interesting

result
Lo R r[ie(2Y (1.101)
P TSy 2zR) | ’

Thus, the radius of curvature of a circular helix is a constant determined by its
pitch and the radius of its base circle. Moreover, since sin y < 1, the radius of
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curvature is larger than the radius of its base circle. Notice that when y = /2,
the helix degenerates to its base circle, and then p = R. When y =0, the helix
degenerates to its axis, and in that case p = co. The result (1.101) may be used
to rewrite (1.100) in terms of the radius of curvature; we get

v(P, ) = pe sin 9, a(P, t)=p(wsiny)*n. (1.102)

Notice that these results are similar to the equations (1.74) for a motion with
constant angular speed w sin y on a circle of radius p.

The intrinsic velocity and acceleration also may be derived by
straightforward application of (1.75) to the Cartesian equations (1.15) and
(1.16). This exercise is left for the student.

1.8. Summary of Particle Kinematics

Our study of particle kinematics has evolved naturally from four primary
definitions: reference frame, motion, velocity, acceleration.

(i) A reference frame ¢ = {O;e,} is a set consisting of a suitable origin
point O in space and a suitable triple of mutually perpendicular unit vectors
e

(ii) A motion of a particle P relative to ¢ is defined by its time-varying
position vector in ¢:

X=x,(P, 1) [cf (1.1)].

This specifies the locus of places occupied by the particle as a function of time.
(iii) The velocity of P relative to ¢ is the time rate of change of its
position vector in frame ¢:
Vv=v, (P, 1)=%,(P,1)  [cf(18)]
The magnitude of v is called the speed: v=|v|=(v-v)"%
(iv) The acceleration of P relative to frame ¢ is the time rate of change
of its velocity vector in ¢:

a=a,(P,1)=V (P, )=%,(P,1)  [cf (19)(1.10)].

When the identity of ¢ is clear, the subscript notation may be suppressed.
In a rectangular Cartesian reference frame ¢ = {O; i, }, we have the useful
explicit representations

x=x()i+p()j+z()k  [cf (1.6)],
v=x()i+p(0j+2)k  [cf (1.11)],
a=#() i+ j+ik  [cf (1.12)].
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The speed of the particle is the time rate of change of the distance s(¢) traveled
along its path:

p=3§(t)= (24 P2+ [cf (1.13)].

The velocity and acceleration relative to ¢ have an especially simple and
useful representation when referred to the intrinsic reference frame ¥ = { P; t, }
that follows the particle:

v=it, a=st+xim  [cf. (1.70)~(1.71)].

The velocity vector is in the direction t tangent to the path. The acceleration,
if it is not zero, is in the osculating plane and directed toward the concave side
of the path, as shown in Fig. 1.13. Among all planes at the point P on the
path, the osculating plane lies nearest to the curve at P; it is determined by t
and the principal normal vector n directed from P toward the center of cur-
vature. The curvature k, or its reciprocal, the radius of curvature R, is a
measure of the rate of turning of the tangent line along the path:

1

R

dt

ds| |ds

=‘d9' [cf. (1.72)],

wherein 0 is the angle that the tangent vector makes with a fixed line in the
osculating plane. All of these properties are independent of the coordinate
system used in the spatial frame. See also (1.75) and (1.76).

In a rectangular Cartesian reference frame in which the motion is con-
fined to a plane, the curvature is given by

B dy/dx?
T+ (dyjax) 17

[cf. (1.81)].

| P
N ' [1+ (dx/dy)*]*"*

This short list of important relations must be remembered. The rest,
except for a few easy definitions of terms, should be seen as following
naturally and logically from these few principal equations rather than by rote
memorization of other special formulas. Various methods that are useful in
the solution of a wide variety of problems have been described in the exam-
ples and expanded further in the selection of problems. Future subject matter
builds continuously upon this foundation; therefore, skills developed here will
be sharpened further in new applications that lie ahead in the development of
other useful kinematical formulas for rigid body motion and for motion
relative to a moving reference frame. Some special introductory topics that
expand upon our work in this chapter are presented in the next section.
However, this matter may be omitted in a first reading with no significant
interruption in continuity, if the reader prefers to move forward to Chapter 2.
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1.9. Special Topics

Three special topics of an introductory nature will be presented. We
begin with the continuation of our study of the intrinsic description of particle
motion to account for the rate of rotation of the binormal vector. We shall see
that this characterizes the turning motion of the osculating plane as it twists
along the path. Our second topic involves the geometrical description of the
velocity vector as a “path writer” in the same way that the position vector is
the “path writer” in the actual motion of the particle. This velocity vector path
is called the hodograph. Finally, we conclude with an introduction to
singularity functions and their application in some elementary kinematics
problems.

1.9.1. Some Additional Properties of the Intrinsic Basis

We have learned in (1.72) that the rate of rotation of the tangent vector
describes the curvature of the path. Similarly, because the unit binormal vec-
tor is always perpendicular to the osculating plane, its directional change
along the trajectory characterizes the rotational motion of the osculating
plane. Since the normal vector must stay in the osculating plane and remain
perpendicular to both the tangent and binormal vectors, its rotation is deter-
mined by theirs. These additional rotational effects will be studied below.

We begin by recalling that the intrinsic vectors t, m, b are mutually per-
pendicular unit vectors. Hence,

t-t=1, (1.103a)

n'n=1, (1.103b)

b-b=1, (1.103¢)
and

t-n=0, (1.104a)

n-b=0, (1.104b)

b t=0. (1.104c)

Then differentiation of (1.103c) shows that b- db/ds =0. Therefore, db/ds is
perpendicular to b and lies in the plane of t and n. Consequently, we may
write

db

—o=attm, (1.105)

where o and t are certain scalars. These are determined next.
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To find a, we form the dot product of (1.105) with t and use (1.103a) and
(1.104a) to get a =t db/ds. But differentiation of (1.104c) and use of (1.65b)
and (1.104b) reveals that

d dt
%'t+b-a§=a+b-xn=a=0.

Hence, (1.105) shows that db/ds is parallel to n:

db
ds

db

Ay

™ with 7=+ (1.106)

We see that the scalar t, which may be positive, negative, or zero, is a
measure of the rate of rotation of the binormal vector as the particle moves on
its path. Since the change (1.106) in the unit vector b is parallel to n, and b is
always perpendicular to both t and n, we see that 7 measures the twisting
rotation of the osculating plane in either direction about the tangent line. In
particular, if T <0, db/ds has the direction —n; and, in this case, b revolves
around t in the right-hand sense of a screw advancing along t as the particle
advances on its path. Therefore, 7 is called the torsion of the curve. Clearly,
ft]=[L '] follows from (1.106). When the path is a plane curve, b is a con-
stant vector and (1.106) shows that every plane curve has zero torsion.

Now let us consider the rotation of the normal vector. Since t, n, b form
an orthonormal basis, we have n=b x t. Therefore, with (1.65a) and (1.106),
we get dn/ds=bxxn+tnxt [see (A.25) in Appendix A]; that is,

dn/ds= —xt—tb  with {Z—:‘ = (kK2 + 122 (1.107)

This is the scalar rate at which n rotates with respect to s. Of course, since n is
constrained to follow the rotations of t and b, its rate of rotation, as shown in
(1.107), is determined by « and 7. For a plane curve, =0 and (1.107) con-
firms that n rotates at the same rate x at which t turns with respect to s.

Collecting our results (1.65a), (1.106), and (1.107), we have the following
set of intrinsic rotation equations:

dt/ds = kn, (1.108a)
db/ds = n, (1.108b)
dn/ds = —kt—1bh. (1.108¢)

In other books these basic equations often are called the Serret—Frenet for-
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mulas. 1t can be shown by aid of (1.108) that the curvature and torsion of any
smooth path are given by (cf. Problem 1.81)

&x d*x\'"*? dx d’x  dx
={—"—] , = —R*'— —x—. .
(a’sz dsz) ds ds2 " ds® (1.109)
We shall discover some interesting additional results from the following easy
applications of (1.108).

Example 1.15. A particle P moves on a path for which the ratio of its
curvature to its torsion at every point is a constant u. Describe the path and
find the torsion.

Solution. Information about the nature of the path may be obtained from
the differential equations (1.108) which describe its bending and twisting. We
want to characterize the paths for which p =/t is a constant. To accomplish
this, we notice that elimination of n between the first two equations in (1.108)
yields the general relation

dt db
— i = K/T. 110
5 U ” with p=«x/t (1 )

Thus, for constant y, (1.110) yields the simpler equation
d
—(t—pub)=0,
7, (t—ub)

whose general solution is
t—ub=d, (1.111)

wherein d is a constant vector. It follows from (1.111) that d has the
magnitude

d=(1+pu?)"2. (1.112)

In addition, it is seen that the dot product of (1.111) by t and use of (1.103a)
and (1.104c) yield the condition t-d=dcos y =1, where y = {t,d)> denotes
the angle between t and d. That is, with (1.112),

cosy=(1+u*)""2 (1.113)

which is a constant. Since d has a constant direction in the plane of t and b,
this result shows that the tangent to the path at each point makes a constant
angle with the fixed direction d. However, as explained in Example 1.14, this
property is unique to a helix. We thus learn that the only twisted paths for
which the ratio yu =K/t is a constant are helices.
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Although the radius R and pitch p of the helix are unknown, we can find
an expression for the torsion of a circular helix in terms of these quantities.
The pitch triangle described by (1.113) and (1.96) yields

tany:uzznTR. (1.114)

Since k = ut, (1.101) and the second half of (1.114) show that the torsion of a
circular helix is a constant determined by its pitch and the radius of its base cir-

cle:
_1{p 2\
T—E{m*[”(m) ]} (L115) O

Example 1.16. If the path of a particle is traced on a fixed surface S, the
tangent vector to the path also is tangent to S; but the normal vector n is not
necessarily perpendicular to S. This is evident for the circular path 1 on the
surface of the sphere shown in Fig. 1.17, for example. If n is perpendicular to S
at every point of the trajectory, the path is called a geodesic on S. In par-
ticular, the great circle along path 2 shown in Fig. 1.17 is a geodesic on the
sphere. Indeed, it is clear that these are the only curves for which n can be
parallel to the normal vector e along every radial line to the curve from the
center of the sphere. Thus, the only geodesics on the sphere are great circles.
Other examples are less obvious. Find the geodesics on a right circular cylin-
der.

Solution. The normal vector e,, say, at each point on the surface of a
right circular cylinder is directed along a radial line perpendicular to the cylin-
der axis k. Therefore, along a geodesic on the cylinder surface the principal
normal vector n= —e,, so it also is perpendicular to k: n-k=0. It follows
from (1.108a) that k-dt/ds=d(k-t)/ds=0; hence, k-t=cos{t, k) =const.

Figure 1.17. Intrinsic motion and the geodesics
on the surface of a sphere.
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But the only curves whose tangent at each point makes a constant angle with
a fixed direction are helices. Thus, the only geodesic paths on the surface of a
cylinder are helices. Notice that when k - t =0, the geodesic on the cylinder is
the plane circle normal to k; and when k- t=1, the geodesics are axial lines
on the cylinder. These are degenerate helices having zero and infinite pitch,
respectively.

Finally, it must be mentioned that it is shown in books on differential
geometry that among all curves joining two neighboring points on a smooth
surface, a geodesic curve is the shortest path connecting them. Thus, the shor-
test distance between two points on the surface of a sphere is along the arc of
a great circle, while on the surface of a cylinder the shortest path is an arc of a
helix, its base circle, or a line parallel to its axis.

1.9.2. The Hodograph

The intrinsic equations have revealed interesting geometrical qualities of
the velocity and acceleration that are independent of the coordinate system
used in the spatial frame. The velocity vector is tangent to the path traced by
the position vector, and the acceleration is directed in the osculating plane
toward the concave side of the path. In this section, we introduce a simpler
kind of geometrical description for the velocity and acceleration that uses the
velocity vector as the path writer.

Imagine a fictitious particle P, whose “position vector” x  relative to an
origin 0’ is equal to the velocity vector of the particle P in the actual motion;
and let us write v, =X, for the “velocity” of P,. Then

Xy =V, (1.116a)
vy=a. (1.116b)

The “motion” x,, is called the hodograph motion; and the path %, traced by
X, =V, as shown in Fig. 1.18b, is called the hodograph. In these terms, (1.116)

(a) Particle Motion {b) Hodograph Motion

Figure 1.18. Comparison of the hodograph motion and the particle motion.
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shows that the “velocity” v, in the hodograph motion, called the hodograph
velocity, is equal to the acceleration in the actual motion. Hence, the
acceleration in the particle motion always is tangent to the hodograph. This is to
be compared with the intrinsic description of the actual motion in Fig. 1.18a.
Some examples follow.

Example 1.17. The velocity vector in a uniform motion of a particle is a
constant vector v=v,. Therefore, the hodograph is a point x, = v,, constant.
Notice from (1.116b) that the hodograph velocity is zero: vy =a=0. g

Example 1.18. If a particle has constant acceleration a#0, the
hodograph is a path described with constant velocity v, =a. The equation of
the hodograph is obtained by integrating a=x,; we get Xxy=v=at+c,
where ¢ is a constant vector. Hence, the hodograph is a straight line. ]

Example 1.19. Suppose that the velocity in the hodograph is always per-
pendicular to the hodograph position vector. Describe the hodograph. What
can be said about the actual motion of the particle?

Solution. Since

d (1
XH'VH=E EXH'XH =0,

it follows that x,, - x ;, = constant. Therefore, the hodograph is a curve on the
surface of a sphere; and because x, =¥V, the particle has a constant speed.
Hence, in the actual motion a = k$%n, v = §t and § = const. Nothing more can
be said about the actual motion.

1.9.3. Singularity Functions in Particle Kinematics

We have thus far assumed that the motion, velocity, and acceleration are
continuous functions of time. But there are numerous applications where this
condition is not satisfied by all, or possibly any, of these functions. OQur study
in Example 1.10 of the reciprocating uniform motion of the push rod showed
specifically that the velocity changed abruptly at the end of each stroke but
remained constant everywhere else. Behavior of this sort, in which a function
is continuous except for a finite number of jump discontinuities at each of
which the function has definable limits from both the right and the left, is
called piecewise continuous.

Problems characterized by piecewise continuous behavior can be solved
by ordinary methods applied to the separate continuous parts, and the
solutions for adjacent parts eventually can be patched together somehow. In
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fact, this approach is so common that it was used without special mention in
our earlier derivation of (1.58) and (1.59) for the cam shape. This procedure,
though straightforward, often proves laborious and cumbersome to do except
in simple cases like the symmetric cam operation. In this section, we shall
study a more powerful method by which piecewise continuous functions may
be treated as if they were continuous functions. To accomplish this trick, two
special tools will be needed: the unit step function and the delta function.
These functions and their calculus will be described next. Afterwards, the
results will be applied in a review of our earlier cam design problem and in
the solutions of some other simple kinematics problems.

19.3.1. The Unit Step Function

In problems where the position, velocity, or acceleration may change
abruptly, it is convenient to introduce special functions to handle these cases.
Each of these functions will behave much like a switch that gets turned on or
turned off only when the independent variable x, say, takes on certain values.
An important example is the unit step function u(x)= {(x—a)’ shown in
Fig. 1.19. Tt is seen that this piecewise continuous function has the value zero
for all x < a and the value 1 for all x > g; that is, as x just exceeds the value q,
the switch u(x)=<{x—a)>®=1 is turned on. The limit value of u(x) as x
approaches a from the left is zero, while the limit from the right is equal to
one. Because the value of uw(x) at x=a is undecided, we say that u(x) is
undefined at x=a. Thus, the unit step function shown in Fig. 1.19 may be
defined by

0 if x<a
wx)=<{x—ad’={1 if x>a (1.117)
undefined at x = a.
The special angle bracket notation for {(x—a}° is used for future con-
venience. We shall see that the unit step function is a major building block
used in construction of other piecewise continuous functions.

This mathematical idea models, among other things, the physical act of
turning on a light. In this case x is identified as the time variable ¢. Prior to

ulx)

i

b a AL— xa Figure 1.19. Graph of the unit step
O — function u(x)= {(x—a)’
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H(x)

Figure 1.20. Use of the unit step function
to turn on a smooth function h(x) at
x=a and turn it off at x=5.

some instant r,=a, the light is off; then the switch is thrown and the light is
instantaneously turned on—at least it appears so. To see how the unit step
function can be used as a similar kind of mathematical switch, let us consider
a continuously differentiable function A(x) defined on a<x<b. To save
words, any such function A(x) will be called a smooth function. Then the
function H(x) defined by

H(x)=({x—a>°— {(x—b>°) h(x) (1.118)

reveals how the unit step function is used to turn on the function A(x) at x=a
and, with use of the minus sign, turn it off again at x = b. Indeed, we see from
(1.117) that (1.118) implies that

0 if x<a
h(x) if a<x<b
0 if x>b
undefined at x=a and x=5.

H(x)=

This switching effect is pictured in Fig. 1.20. A more specific example is given
by the function

H(x)=(x—2)2(x—1>° (1.119)

shown in Fig. 1.21. The parabolic function h(x)=(x—2)? is turned on at
x =1, and it remains on indefinitely. If we wish to discontinue its use at x =3,
say, we simply subtract the term (x—2)>(x—3>° from the function in
(1.119).

Hix)

hix)=(x-2)7,

Figure 1.21. Graph of the function H(x)= I .
(x—=2)2(x—1>° - 0 1 2 3 x
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19.3.2. The Delta Function

It is seen from (1.119) that to compute the derivative of the function
H(x), we shall need to know the derivative of the unit step function
u(x)={x—a)’ It is evident from Fig. 1.19 that the slope of the unit step
function is zero everywhere except at the discontinuity at x =a where the
slope of the step is infinite. This leads us to “define” another special function

0 if x#a

. 1.120
o0 if x=a, (1.120)

ams<x—a>4={

so that du(x)/dx = 6(x); that is, using the angle bracket notation in (1.117)
and (1.120), we have

d o_ s
= (x—a)=(x—a) . (1121)

The function described by (1.120) is called the delta function. The sub-
script “—1” is used as a mnemonic device to remind us that the differentiation
rule for the unit step function is similar to the usual rule for the derivative of
an ordinary power function. Additional motivation for this usage and further
interpretation of (1.120) will appear later on. The é-function is especially
useful in the description of concentrated or suddenly applied loads that occur
in impact problems, so d(x) also is known as the wunit impulse function. This
application will be discussed in Chapter 6.

1.9.3.3.  Calculus of Singularity Functions

In view of the jump behavior of the unit step function at x =4 and the
consequent singular behavior of the delta function at x =g, these functions
and all others associated with them through products with smooth functions,
derivatives and integrals are called singularity functions. It is essential that we
consider a few rules governing their differentiation and integration. Our first
rule (1.121) enables us to compute the derivative of the singularity function
(1.119) by use of the usual product rule, for example. More generally, with the
help of (1.121), we consider

dh(x)

(x—ad+h(x{x—a)_,, (1.122)
dx

d 0 _
7 LA )Kx—adt] =

in which k(x) is any smooth function. In view of the definition (1.120),
however, the product of the d-function and the smooth function A(x), con-
tinuous at x =q, is defined by

h(x) 8(x) =h(x){x—a>_, =h(a){x—a)>_,, (1.123)
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which vanishes whenever h(a)=0. Use of this result in (1.122) yields the
general rule for the derivative of the product of a smooth function h(x) and the
unit step function {x—a)>":

dh(x)

{(x—ad’+h(a){x—a)_,, (1.124)
dx

d
— [h(x)<x—a>®] =
X
in which the last term vanishes whenever h(a)=0.
Let us now recall (1.119) in which A(x)= (x—2)? is a smooth function

whose value at x=1is A(1)=1. Application of (1.124) gives the derivative of
(1.119):

dH(x)
dx

=2(x—2){x— 1>+ (x—1>_,.

More generally, let A(x)=(x—5)". Then h(a)=(a—5b)" and (1.124)
yields

4 [(x=b){x—ad’T=n(x—b)""(x—a)®
dx
+ (@a—bY{x—a)_,. (1.125)

In particular, when n> 1 and b =q, the last term in (1.125) vanishes; and we
thereby obtain the special rule for the derivative of the power function

{(x—a)™

di<x—a)"=n<x—a)"" for n>1, (1.126)
X

in which, by definition,
(x—ad'=(x—a)y'{x—ad°

0 if x<a
“{(x—a)" LSt ter anl (1.127)
The rule (1.121) may be considered as the extension of (1.126) to the case
n=0. This lends motivation to our earlier use of the subscript notation.

Notice that in (1.127) the value zero is admitted at x =a because the
function {x —a)" for n>1 is continuous and vanishes at x = a. In particular,
the graph of the function u;(x)={x—a)', which is called the unit slope
Junction, is shown in Fig. 1.22. It is seen that u,(x) is equal to zero for x<a
and equal to (x — a) for x > a. This function is continuous with value zero at
x=a, but its derivative uj(x) is not. The graph shows that u«}(x)=0 when
x <a, and uj(x)=1 for x > a; but u}(x) is not defined at x = a. Therefore, we
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u, {x) —
Slope=1 [
xX-a
— L
—a J— X8 ——— Figure 1.22. Graph of the unit slope
x functions u,(x}= {(x—ad'.

are able to see graphically that the derivative of «,(x) is equal to the unit step
function. Indeed, from (1.126)

%<x_a>1=<x_a>0, (1.128)

Higher derivatives of the various singularity functions may be computed
similarly. For instance, application of (1.121) in (1.128) yields

£2<xfa>'=i<x-a>°:<x—a> L= 8(x). (1.129)
dx dx

The motivation for introduction of the subscript notation in (1.121) is again
evident here. Of course, the next derivative of (1.129) will create still another
kind of singularity function, namely, dd(x)/dx=<{x—a)_,. This
mathematical creature, called the doublet, will not be studied here.

To invert the differentiation process, we shall need a few easy rules for
integration of singularity functions. Let us consider the integral of the product
of a smooth function A(x) and the unit step function expressed by

0 if x<a

Fix)= } h —addE={ x
x) Lm (€ E—arde ["meyaz it x>a  (1L130)

a

for all values of ¢ in the interval — oo <& < x. The quantity ¢ is the dummy
variable of integration, x denotes the problem variable, and a is the fixed
position of the step, as usual. When x <a, F(x)=0 because the integration
runs only to the point ¢ = x < a where the switch (& —a)° remains off. But if
x exceeds a, the unit step switch is turned on, and (& —a>® =1 as before. This
leads to the bracketed expression in (1.130). Thus, the integral of the product
of a smooth function and the unit step function is given by

fﬁ h(f)<54a>°d£=<x—a>oj h(&) dé. (1.131)

In particular, consider A(¢)=(f—a)" with n=0,1,2,., and recall
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(1.127). Tt is seen that (1.131) yields the following special rule for the integral
of the power function (x —a)":

x _ n+1
j Goayde =2 o w012 (1132)

_ n+1
Notice that the graph of the unit step function in Fig. 1.19 shows that the
area under the curve is zero if x <a and equal to (x —a) when x > a. This
agrees with the familiar area interpretation of (1.132) when n=0. And,
similarly, it is easily seen that for n =1 the integral (1.132) is equal to the area
of the triangular region shown in Fig. 1.22.
Finally, in view of the rule (1.121), the integral of the é-function is defined
by
[ s@ae=]" <c-a>_ de=cx-a)" (1133)
With the use of (1.123) and (1.133), we may also derive the rule for integration
of the product of the delta function and a smooth function which is continuous at
x=a:
[" nee@a=[" mexe—a>_ di=haxx—a). (1.134)
The behavior of the -function certainly is unusual. According to (1.120),
d(x) vanishes everywhere except at x=a where it becomes indefinite; yet
(1.133) shows that the area under its graph for x>a equals one. We
appreciate that no ordinary function can have these unusual properties. This
behavior can be seen more clearly by review of the derivative concept used in
(1.121); namely, the limit definition

(x+dx—ad®—<(x—ad°
Ax ]

8(x)= lim [ (1.135)

4x -0

The expression in square brackets may be interpreted graphically in Fig. 1.23
as a function 1/4x which is turned on at x = a — 4x and shut off at x=a. For
a fixed value of Ax, the base of the shaded rectangular region has length Ax
and height 1/4x; hence, the enclosed area is equal to 1. As Ax is made smaller,
the height grows larger; but the enclosed area remains the same. This is shown
by the dotted rectangles in Fig. 1.23. Thus, as 4x — 0, the value of §(x) grows
indefinitely at x = a, as described by (1.120); but the dimensionless area under
its graph always is equal to one, a property described by (1.133). Clearly, the
physical dimension of J(x) must be the reciprocal of that of
x:[8(x)]=[x""']. We thus see graphically that the properties of the -
function are not so strange after all.

This completes our introductory study of singularity functions and some
of their important properties. In summary, we recall the definitions of the unit
step and é-functions given in (1.117) and (1.120), respectively. These functions
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Figure 1.23. Graph of the limit rectangles for the é-function defined in (1.135).

are related through the first derivative of the unit step function in (1.121). Dif-
ferentiation and integration of the product of a smooth function and the unit
step function are given by (1.124) and (1.131). Some special power rules for
differentiation and integration of singularity functions are provided by (1.126)
and (1.132), in which the defining relation (1.127) must be remembered. The
integral of the dé-function is defined by (1.133), and (1.134) provides its
integral with a smooth function. It is emphasized that, in general, products of
singularity functions of the same variable are not defined. (However, see
Problem 1.99.) In the next part, we shall appeal to these results in their
application to some examples.

1.9.3.4. Some Applications of Singularity Functions in Kinematics

It has been emphasized along the way that singularity functions have
many useful applications in mechanics and in other areas of engineering that
include electrical circuit theory, electromagnetic theory, and heat transfer, for
example. Therefore, it is natural that the student may expect to encounter
these functions in other work. The elementary analysis of the shear and
bending moment functions for beams under various loading situations are
noteworthy applications studied in mechanics of deformable solids, for exam-
ple. In this application, the unit step function turns the load distributions on



Kinematics of a Particle 55

and off as needed; and the d-function is used to model a point load on a
beam. In other physical applications the §-function may be used to model the
impact of a hammer blow, an instantaneous surge in a shorted circuit, and a
lightning bolt striking a tree.

In our present work, the utility of singularity functions in some simple
applications to kinematics of a particle will now be illustrated. Our first exam-
ple of the motion of a mass supported by a spring mounted on a movable
support involves the application of the unit step function (1.117) and the rule
(1.124) for differentiation of its product with a smooth function that vanishes
at the point of discontinuity.

Example 1.20. A particle of mass M is supported vertically by a spring
which is fastened to a movable horizontal support. The system initially is at
rest when the support experiences a sudden upward displacement of constant
amplitude 4. The particle is vibrating as a consequence of this disturbance
when the spring support experiences at the instant z, a sudden downward dis-
placement of the same amplitude. Because of these disturbances, the
oscillatory motion of the mass a function of time ¢ is described by

X(M, 1)=A{(1 —cos wt){t—0>°— [1 —cos m(t — t5)]{t— 1,5°},  (1.136)

where A = Aj, w is a constant and the definition (1.117) is to be recalled. Find
the velocity and acceleration of M, and show that the motion satisfies the
following differential equation:

%+ 02 = A[{t— 00— (t—1,)°]. (1.137)

Solution. The velocity is determined by (1.8), as usual; but its application
to the motion (1.136) requires use of the rule (1.124) to deal with the
singularity functions. First, we identify in (1.136) two smooth vector functions

h,(t)=A(1 —coswt) and h,(¢1)=A[1—cos w(t—1t,)]

for which h,(0)=0 at t=0 and h,(¢,) =0 at t=1¢,. As a consequence of these
initial conditions, the d-function terms in the rule (1.124) will vanish in its
application to the present case. Thus, with this identification in mind, differen-
tiation of (1.136) in accordance with (1.124) yields the velocity

v(M, t)=Aw[sin wt{t —0)>° —sin w(t — t,){t — t,>°]. (1.138)

Of course, the acceleration is obtained by (1.9); but in view of the
singularity functions in (1.138), we must appeal again to the rule (1.124). By
repeating the previous procedure, the reader will find that the acceleration is
given by

a(M, 1) =% = —Aw2[cos wt{t—0>° — cos w(t — 1)t — 1o >°]. (1.139)
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The differential equation of motion (1.137) is easily derived by mul-
tiplication of (1.136) by w” and addition of the result to (1.139). Use of
(1.117) in (1.137) shows that the motion is governed by two differential
equations:

x+ox=0w’A for 0<t<t, and X+w>x=0 for t;<t. (1.140)

In the same way, the solutions of these equations may be revealed by expan-
sion of (1.136). As an exercise, the student may derive the equations for the
velocity and acceleration from these separate solutions and compare the
results with those obtained by expansion of the equations (1.138) and (1.139).
Equations of the kind (1.140) will be studied in greater detail in Chapter 6.
O

Let us consider another example. This time the é-function (1.120) and the
derivative rule (1.124) for the product of the unit step and a smooth function
that does not vanish at the point of discontinuity will be applied to study the
assembly line motion of a part having a discontinuous velocity. In addition,
the impulsive character of the delta function will be observed.

Example 1.21. A small component part P is moved along a straight
track in an assembly line operation. The part, previously at rest, begins its
journey at t=0 by being placed instantaneously upon a conveyor belt that
transports it with a constant speed v. At the instant ¢ =0, the speed of P is
changed suddenly to §=vsin(2nz/r) when the piece is whisked away by a
robot to reach its terminal assembly point at the instant t=1. There, the
robot deposits the part to rest and returns to its starting position for another.
What is the jump in the speed of P at t =07 Find the acceleration of P as a
function of ¢.

Solution. In general terms, the jump in the quantity Q(x) at x=o is
defined as the difference AQ =Q(a" ) — Q(a ) in the values of a quantity Q(x)
at the value x=o as a is approached from the right, where x>a and
Qat)=lim,_,O(x), and from the left, where x<a and
Qa7 )=lim, _ , Q(x). Of course, the quantity Q(x) is continuous at x =« if
and only if 4Q =0. In the present example, however, the velocity vector of P
is a discontinuous function of the travel time ¢ along the straight track. Dur-
ing the first phase of its motion, the part has a constant speed $(¢)=v that
gets turned on at t=0, so obviously the jump in the speed at +=0 is v.
Thereafter, at r= g, the speed is changed suddenly to §=vsin(2n¢/t). Thus,
the jump AV=3s(c*)—4(oc ) in the speed at r= o is given by

AV = v[sin(2no/t)— 1]. (1.141)

The part eventually is brought smoothly to rest at r=1.
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The foregoing description shows that the velocity of P along the entire
track may be conveniently expressed in terms of the unit step function (1.117):

v(P, 1) =iv({t—0)°— {t—0)°) +ivsin (gf—t>
x [{t—a)°—(r—1)°]

But the last term may be discarded because ¢ never exceeds 7 and the speed
vanishes there. We now have

v(P, ) =iv{t—0>°+iv [sm (2: )— l] (t—0)° (1.142)

The acceleration is obtained by differentiation of (1.142) by use of the
rule (1.124). This time we identify two smooth vector functions

i L 2
h,(t) =i, aconstant and h,(¢)=iv [sm (r_) — 1]

with values h;(0)=vi at t=0 and, with (1.141), h,(¢)=idV at t=o.
Therefore, differentiating (1.142) in accordance with (1.124), we derive the
acceleration vector

a(P,t)=v{(t—0)_ +2—vcos( )(t—a)O—AVO»—a) o (1.143)

Wherein v=vi and AV = A4Vi.
This formula shows that for o <1< 1 the acceleration is given by

a(P,t)= 2— Vv COS <2nt).
T

Also, in agreement with the uniform motion condition on 0 <t<a, (1.143)
confirms that the acceleration is equal to zero there. The presence of the 6-
functions in (1.143) reveals the interesting result that the acceleration has an
impulsive character whose strength or intensity may be defined by the coef-
ficients of the -functions. Thus, (1.143) shows that these impulsive strengths
are proportional to the jumps in the speed at 1 =0 and ¢ = ¢. To fix the proper
physical dimensions, we observe in (1.143) that the J-function must have
dimension equal to the reciprocal dimension of ; hence, [6]=[7']. Since t
defines a natural time parameter over the whole interval of interest, it may be
used to nondimensionalize the d-functions in (1.143) by multiplying each coef-
ficient by 7/1. Now, with the proper physical dimensions, we see, for example,
that the acceleration discontinuities at =0 and ¢=o¢ have shocklike inten-
sities proportional to v/z and to 4V/z, respectively. O
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The same phenomenon occurs in our earlier cam design problem, which
is the subject of our third example. The special rule (1.132) for integration of a
power function (1.127) and the derivative rule (1.121) for the unit step
function will be applied. The strength of the impulsive acceleration at the end
of each stroke will be described and the results exhibited graphically.

Example 1.22. Let us reconsider the cam design problem studied in
Example 1.10. We recall that two equations (1.58) and (1.59) were needed to
describe the entire reciprocating, uniform motion of the push rod as the cam
turned with the constant angular speed w through the angle 6, as shown in
Fig. 1.9. This occurs because the velocity is discontinuous at the end of each
stroke at =0 (or 2n) and 0 = . We wish to show that the entire motion can
be easily determined with the aid of singularity functions, and we shall also
study the acceleration behavior.

Solution. During the forward stroke when 8¢ [0, n], the push rod has
the uniform forward velocity v,= »i. This gets turned on at 6 =0 and turned
off at @ =7z. For the return stroke, defined by # e [n, 2n], the uniform return
velocity is v, = —ui. This gets turned on at 6 =z, and it stays on for the rest of
the interval. Therefore, recalling (1.117), we see that the velocity on the entire
interval [0, 2n] may be conveniently expressed by

V(P 1)=v{0—0)"—v(f—m)°+v (8 —n>°—v, (0 2m °. (1.144)
Since v, = —v,, (1.144) may be rewritten as
v( P, t)=vf[<9—0>°—2<07n>°+(8—2n>°] (1.145)
Our objective is to derive the cam shape from this expression.

The relation (1.56), in the same way as before, allows us to separate the
variables r and @ in (1.145) to obtain

r ) [}
Jw’dri=!1|ijo<9»0>°d9—2j <9~n>°d0+j (9-2n>°d0],
a a0 0 o

wherein r(0)=a, as shown in Fig. 1.9. Application of the integration rule
(1.132) to the last equation and use of v,=vi yields the cam shape function

r(9)=a+£[<9~0>u2<9—n>1+<9—2n>1] (1.146)

for all 6 € [0, 2r]. But the rule (1.127) shows that the last term vanishes for all
0<2r, so we may discard it. We recall also that r(r)=a+b, as shown in
Fig. 1.9, whereas (1.146) together with (1.127) gives r(n)=a+ (v/w) 7; hence,
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b=rmnv/w, as before. Therefore, the cam profile (1.146) is determined for all
0 € [0, 2n] by the single equation

r(0)=a+%[(0—0>1—2(0~n>1] with §= (1.147)

gle

Our earlier equations may now be retrieved by use of (1.127) in (1.147);
its expansion yields

a+20 for 0<<0<m,
i
r(0) =

a+b<2—g> for n<O<2n. (1.148)

These are the same as (1.58) and (1.59) given before.
The acceleration may be derived from (1.145). With the aid of (1.121), we
get

a(P, t)=9%=wv,[<0—0>_1—2<0—n>,1+ B-2my_ |1 (1.149)

This result, together with (1.120), shows that the acceleration at the end of
each stroke changes abruptly with strength vw = bw?/n at #=0 and 2z, and
—2vw= —2bw’/n at O=mn. Note that [§(0)]=[1]. Thus, the use of
singularity functions in this study enables us to obtain a measure of the
shocklike, impulsive accelerations that occur instantaneously at the end of
each stroke.

Graphs of the motion (1.148) and the components of the velocity (1.145)
and the acceleration (1.149) are shown in Fig. 1.24. The unit step character of
the speed v(8), which is described by (1.145), and the unit slope nature of the
push rod motion x=r(6), described by (1.147), are evident. The d-function
character of the acceleration a(8) found in (1.149) is indicated in Fig. 1.24 by
the small open circles at the points of discontinuity, and the corresponding
strengths of the impulsive accelerations at these points are indicated by the
arrows. We have seen that the latter depend upon the cam rise » and the
square of the angular speed w. O

The next example uses the unit step function to model the oscillograph
record of the deceleration of a jet aircraft in its landing on the deck of an air-
craft carrier. The velocity and the motion are found by application of the
power rule (1.132), and the results are described graphically.

Example 1.23. A jet plane makes a rectilinear landing approach toward
an aircraft carrier with a constant velocity vo=1v,i. When the arresting hook
engages the arresting cable, the plane experiences a sudden deceleration



60 Chapter 1

x = r{@)
=
F
i 7 Y / % ,
_ 0, Motion vs. §
vi8)
i T
,f_
v / :
f/ % Speed vs. 8 0
: 7

7
) v
‘
r

B NN\

I -

] ‘Acceleration vs. 8 o0
Figure 1.24. Graphs of the motion, speed,
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a(t)= —a(t)i, which is described by the oscillograph record shown in

Fig. 1.25. Find the speed and the distance traveled by the plane during its
arrestment expressed as functions of the time, determine their values at the
instant 7 =2t,, and plot their graphs for < 2¢,.

Solution. The oscillograph record in Fig. 1.25 indicates properly the zero
acceleration of the plane as it approaches the arresting cable with a constant
velocity v, prior to engagement of its arresting hook at +=0. At the moment
of impact, the plane suddenly decelerates at an average constant value a, for a
time ¢=1,; then the acceleration returns suddenly to an essentially zero
average value up to the time ¢=2t,. Therefore, by use of (1.117), the
oscillograph record of the deceleration may be sensibly modeled by the
function

a(t)=——=2a,(1—0>°—a,{t—1,>" (1.150)

dv(t)
dt

alt)

Figure 1.25. Oscillograph record of

the deceleration of a carrier jet

0 o i t aircraft during its landing arrest-
0 Y 2, ment.
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in which a,= —ayi, a constant. The speed of the plane during its arrestment
will now be derived from the first integral of (1.150).
Bearing in mind the condition v(z) = v, for <0, we find from (1.150)

v(t)

av(t)=a, U(: (t—0)° dt—J‘Ol (t—to)odt].

vo
Application of (1.132) in this equation yields the velocity
V() =5(1)i=vo+a(t—0>'—{t—15)"), (1.151)

which gives the speed $(¢) during the plane’s arrestment.

The distance s() traveled during the landing may be found by integration
of (1.151). Recalling the initial condition x(0) = s(0) i =0 and applying (1.132)
to integrate (1.151), we derive

x(t)=s(t)i=v0t+%q(<t—0>2—(t—t0>2). (1.152)

To graph the results, the equations (1.150), (1.151), and (1.152) have to
be expanded to reveal the separated functions. This yields

a(t)= —a(r)i (1.153a)
0 for <0,
= ga(,: —a,i for O0<t<t,,
0 for to<t<2t,, (1.153b)
v(1)=35(1)i (1.154a)
Vo = Ul for <0,
= I(UO—aot)i for 0<t<1,,
(vg—apty) i for 1, <1<2t,, (1.154b)
x(¢)=s(t)i (1.155a)
voti for <0,
= ; (vot —Lagt?) i for 0<t<ty,
[(vo—apte) t+Lagrd]i for t,<1<2t,. (1.155b)

We see that the first equations in (1.153b), (1.154b) and (1.155b) describe the
flight conditions before impact; and we notice that the equations (1.154) and
(1.155) show that although the acceleration (1.153) is discontinuous at t=0
and 7=1,, the motion and velocity are continuous there. It follows from the
last of (1.154b) and (1.155b) that the speed of the plane on the flight deck at
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the time ¢=2t, and the corresponding distance from the impact point are
given by

§(2t5) =vo—agte and  s(2fy) = 1,(2vg — 3a0tg). (1.156)

No additional information on further braking is provided beyond ¢ =2¢,. The
model results given in (1.153), (1.154), and (1.155) are shown graphically in
Fig. 1.26. The unit step character of the acceleration (1.150) and the unit slope
nature of the velocity (1.151) are visually evident. The results (1.156) also may
be seen there. ]

Our final example concerns the motion of a mass supported by a shock
absorber. The general rules (1.124) and (1.131) for differentiation and
integration of the product of a smooth function with the unit step function are
applied.

Example 1.24. A shock absorber is held in a vertical position by a clamp
bolted to its lower end. A load M, initially at rest at the top end of the shock
absorber in its fully extended position, is moved by a compressive force with a
speed v(7) that increases linearly with the time so that v(zr)=0v* at r=1. At
this instant, the applied force is removed and the load continues its downward
compression with the speed v=v* exp(1 —#/7) until the shock absorber is in

alt)
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its fully compressed position where the load comes to rest. Use singularity
functions to derive the displacement and acceleration of the load as functions
of the time for 0 <7< oo, and graph the results. What is the fully extended
length of the shock absorber?

Solution. During the period 0 < ¢ < 7, the load moves from its initial rest
state with linearly increasing speed v(¢) =kt. The constant k is determined by
the condition v(t)=v* =kt at ¢t =1; therefore, v(t) =v*t/r for 0<r< 1. The
force that produces this motion is removed at the instant 7, and the load con-
tinues its downward motion with the new speed v(¢) =v* exp(1 —t/7) for t< 1.
It is seen that the speed is continuous with value v(t)=v* at t=1. Hence,
with use of (1.117), the speed v(¢) for all times 0 < < o0 may be expressed by

*
v(t)=th [Kt—0)°— (t—1)°] +u*e" ~ 7t — 1) (1.157)
The acceleration is obtained by differentiation of (1.157) by use of the
rule (1.124). We get
*
a(t) == [<r= 00— (1 4+ =)< r—7)°] (1.158)
The rectilinear motion x(¢) is obtained by integration of (1.157), as usual.

Using the initial condition x(0) =0 and the integration rule (1.131), we obtain

x(1) *
' dx=”—[<t—0>°f'tdt—<z—r>°fzdz+r<z—r>°j'e“—'/f>dt].
0 T

0 T T

Then, finally, integration of these elementary functions yields the displacement
of the load from the initial fully extended state of the shock absorber, namely,

x(1) =% [2¢t—0)0— (12 =312 4+ 2¢%" "Nt —1)°].  (1.159)

Graphs of the results may now be obtained by expansion of (1.159),
(1.157), and (1.158). These yield

v*
— <<
x(t)= j 21 ! for 0<t<ry, (1.160a)
v*r[3—et—¥9] for 1<t<co, (1.160b)
v¥t/t for 0<t<n, (1.161a)
o=} s a-ue
v¥*e for 1<t<o0, (1.161b)

v*/t for 0<1<r, (1.162a)

1) = *
a(t) 3_%6,(1_,/1) for t<t<oo. (1.162b)
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It is seen from (1.160b) that the fully extended length of the shock absorber,
denoted by 4, is obtained as the limit value of x(¢) as #— co. Hence,
A =3p*t/2. This is also evident in the graph of the displacement (1.160) shown
in Fig. 1.27. The graphs of (1.161) and (1.162) also are sketched there. Notice
that the removal of the applied load at /=7 results in an abrupt drop of
magnitude 2v*/r in the acceleration, but the displacement and velocity are
continuous there. 1

This concludes our introductory study of applications of singularity
functions to problems in particle kinematics. Although many problems of this
kind may be solved by ordinary methods applied to the separate continuous
parts of piecewise continuous functions, and sometimes results may be
obtained easily by simple geometrical considerations of areas and slopes of
linear graphs, these procedures, particularly the latter, prove tedious or
impracticable when complicated functions or advanced applications are
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Figure 1.27. Graphical description of (1.59), (1.60), and (1.61) for the motion of a load suppor-
ted by a viscous shock absorber.
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involved. Of course, elementary methods reveal nothing about the strength of
an impulsive discontinuity, a concept that proves especially useful in the study
of beams bearing concentrated loads and in the study of motion due to impact
of two bodies, for example. The latter application will be met in Chapter 6.
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Problems

It is essential that throughout the study of this text the student should work a
variety of problems in order to grow familiar with use of the notation, concepts, and
definitions; to cultivate, test, and expand his understanding of the subject matter; to
learn the general methods of mechanics; and to master various techniques of problem
solving. Moreover, in preparation for future work, it also is important that these
problems be approached in a spirit and manner similar to that expressed in the sample
exercises, namely, by the use of vector methods so far as may be reasonable and, in
large measure, without the use of a computing device. Cases where use of a computer
is desirable to promote practice with some numerical calculations will be evident, and
in a few instances use of a computer will be suggested explicitly. In general, however,
numerical values usually will serve only to simplify an analysis and to lay bare the
relevant aspects of the example. Therefore, the majority of the problems in this book
have been constructed to avoid senseless use of a computer so that the student’s skills
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with direct calculations and with manipulations of algebraic and trigonometric
relations may be reinforced and sharpened to develop his ability to handle fundamen-
tal aspects of analytical geometry, trigonometry, and calculus, all essential to the
modern demands of engineering practice.

1.1. The motion of a grain of sand S for a certain time interval during a wind
storm is described by x(S, ¢t)=2r%u(S, t), where u(S, ¢) is a time-dependent vector
function that varies with the wind direction. (a) Derive an equation for the velocity of
S. (b) Let u(S, 1) = 5¢% + 3j— 2tk in frame ¢ = {O; i, }. Find in ¢ the position and the
velocity of S initially and at two units later. Appropriate measure units are understood.

1.2. The motion of a particle X in a frame ¢= {0;i,} is given by
x(X, t)=4(at’ + 2bt + ¢) i, + a cos(pt + q) i, + ce " "'i5, where a, b, ¢, p, and g are con-
stants. Find as functions of the time ¢ the velocity and acceleration of X in ¢.

1.3. A particle @ is moving along the x axis with speed §=
(4x% 4+ 2x +5)"* cm/sec relative to a frame ¢ ={0;i.}. Find the velocity and
acceleration of Q at the place (2,0, 0) cm in y.

1.4. Each particle of a fluid may be identified by its unique position vector in an
assigned reference state in a frame ¢ = {O; i, } at an instant 1, say. This place, whose
coordinates are called Lagrangian coordinates, may serve as an identification label for
a particle during its subsequent motion in a flow. Let the motion of an arbitrary par-
ticle P in a certain flow in frame ¢ be given by

X(P, )= Ae"i+ Be™j+ (C+ Dt) k,

where 4, B, C, D, u, and 4 are constants. (a) Determine the place occupied by P
initially, identify its Lagrangian coordinates, and find the velocity and acceleration of
P in ¢. (b) What are the Lagrangian coordinates and the current position, velocity,
and acceleration of the particle Q which in the same flow is at the place
X(Q, 0)=2i —4j initially? (c) What physical interpretation may be assigned to the
constant D? Appropriate measure units are understood.

1.5. The motion of a particle P in frame ¢ = { F;i,} is given by
x(P, t)=2(sin 2ri+ cos 2tj) + 3t k.

(a) Find the speed of the particle and determine the distance it travels as a function of
time. (b) Show that the acceleration of P in the given motion is perpendicular to its
velocity vector. (c) More generally, suppose that a particle P has an arbitrary motion
with a constant speed in frame . Prove that the acceleration of P in ¥ is perpen-
dicular to its velocity vector. Does this general result apply to the foregoing special
motion of P?

1.6. The guide pin P of a certain machine moves in a groove that is milled in a
flat, steel plate. The groove is designed so that the pin motion in frame ¢ = {O;i,} is
given by

X(P, t)=acos wti; + bsin wti,

in which @, b, and w are constants. (a) Derive the standard equation for the
geometrical shape of the groove. (b) Show that the acceleration of the pin is directed
always toward the origin O, and determine the points along the path of motion at
which the acceleration will be greatest.

1.7. The straight path motion of a particle P in the direction e in a frame ¥ is
described by x(P, 1) = (> — 21>+ ¢) e ft, in which ¢ is a constant. Find (a) the time at
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which the particle has attained a speed of 4 ft/sec; (b) the acceleration at this instant;
(c) the displacement of the particle during the fifth second; and (d) the value of ¢ if the
particle is at the place x,=4eft after 2 sec. Sketch the component graphs of the
position x(¢), the velocity v(z), and the acceleration a(?) as functions of the time .

1.8. A point C in an aircraft during a period of its flight moves in a plane rec-
tangular Cartesian frame ¢ = {O; e, } with a motion

x(C, ty=acosh gte, + bsinh gte,,

where a, b, g are constants. Find the velocity and acceleration of C, and determine the
standard equation of its path. Sketch the path. Recall that cosh?(gr) — sinh®(gt) = 1.

1.9. Two particles P, of mass m, =m and P, of mass m,=3m have motions
X(Py, 1) =x,(t) given by

x,(F)= (@42 +6)j—4k,  x,(1)= —3i+6:%k

in ¢ ={0;1i,j, k}. Measure units may be ignored. The center of mass C of the system
of two particles in ¢ is defined by the position vector x(C, t) = x*(r), where

(my 4+ my) x*(1) =m X, (t) + m,X,(t).

(a) Find the velocity and acceleration of the center of mass of the system. (b) Find the
time rate of change of the speed of each particle. How do these compare with the
corresponding magnitudes of their accelerations in ¢?

1.10. In a frame ¢ = {0;i,}, the moment about point O of the momentum of a
particle P of mass m is defined by the vector hy(P, t)=x(P, t) x mv(P, t). (a) Find the
time rate of change of the moment of momentum of the particles P, and P, described
in the previous problem. (b) How would you define the moment of momentum of this
system of two particles? Find it and determine its time rate of change in ¢.

1.11. A Scotch crank is a mechanism used to convert a rotary motion into a
reciprocating motion or vice versa. If the crank is driven at a constant angular speed
¥ = w as shown in the figure, find the velocity and acceleration of the point P on the
piston. Identify your reference frame.

Problem 1.11.

1.12. A small mass M is attached to a rigid rod HM of length 2a. The rod is
hinged at H to a horizontal push rod BH which is driven by a Scotch crank 04 of
length a. The crank turns with a constant angular speed = w as shown in the figure,
and the system moves in the plane frame @ = {0;i, j} fixed in the engine foundation.
Find the velocity and acceleration of M in &. What is the speed of M in ®?

1.13. A device used to damp vibrations in the crankshaft of an engine is modeled
in the figure as a small ball B that slides freely in a plane motion on the circumference
of a cylindrical cavity within the crankshaft. The cavity has a radius » with center P at
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Problem 1.12.

a distance R from the crank axis at O. The shaft rotates relative to the frame
@ ={0;1,} with a constant counterclockwise angular speed 6 = w. Find the velocity
and acceleration of the ball B in frame @ expressed as functions of the assigned quan-
tities and the angular measures ¢ and .

(! Crankshaft

Frame ¢

Problem 1.13.

1.14. Two blocks are hinged at the two end 4 and B of a rod of length L. The
blocks slide in slots shown in the figure so that the distance x(B, t)=a sin wt, where a
and w denote the constant amplitude and frequency of the oscillations of B, respec-
tively. Find the velocity of the point 4 as a function of time in frame ¢ = {F;e,}.

Problem 1.14,

1.15. The Scotch crank shown in the figure has a 60° slanted link driven by a
crank of radius a that turns counterclockwise with a constant angular speed 6(f) = w.
Find in frame & = {F;1i, j} the motion, velocity, and acceleration of the point Q on the
piston expressed as functions of the time 7 so that initially 8(0) = 0. What are the crank
positions at which the velocity of Q is greatest and least? Find the maximum velocity

of Q.
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Problem 1.15. ' L

1.16. A pin P is designed to slide in a parabolic slot in a fixed plate shown in the
figure. The pin also is designed to move in a vertical slot of a sliding link 4 which has
a constant speed of 2/3 in./sec during a period of its motion toward the right in frame
¥ = {F;i,j}. Find the velocity and acceleration of the pin at the position x =3 in.

Yii
T v, =%in/seci

Problem 1.16.

1.17. A cam mechanism shown in the figure is shaped so that the center of the
roller R traces a limacon defined by the plane polar equation r = 20 cos ¢ + 30 cm. The
roller center, initially at x,=50i, cm, moves around the fixed cam surface with con-
stant angular speed ¢ =n/4 rad/sec. Find the velocity and acceleration of the roller
center in @ = {0;i,} after 2 sec. Frame @ is fixed in the cam.

Problem 1.17.

1.18. At each point along the cam contour of the device described in the previous
problem, e, is a unit vector directed along the radius r from O to R and e, is a unit
vector perpendicular to e, in the direction of increasing values of the angle ¢. Find the
velocity and acceleration of the center of the cam roller referred to the moving frame
¥ ={0;e,,e,}. A general method of handling problems of this kind will be described
in Chapter 4.

L19. Two identical Scotch cranks shown in the figure are rotating clockwise
about fixed axes with angular speeds w, and w,. One crank is hinged at 4 to a link
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AB; the other has a pin P that moves in a slot in 4B. (a) Show that the angular speed
o of the link is given by

_ 3(w, cos ¢ —w, cos )
9+ (sin ¢ —sin 8) ’

(b) Find the simple angular acceleration of the link when the angular speeds of the
drive cranks are constant.

Problem 1.19.

1.20. A trammel mechanism shown in the figure consists of a rod AP of length
6 cm hinged at A and B to blocks that slide in the cross slots. The constant distance
between A4 and B is 4cm, and the rod rotates counterclockwise with a constant
angular speed w =2 rad/sec. Find the motion, velocity, and acceleration of the tram-
mel point P expressed as functions of the angle 0 in frame &= {F; I, J}, and derive
and identify the equation of the path traced by P.

Problem 1.20.

1.21. Suppose that the trammel described in the last problem turns with a con-
stant angular speed w = (n/8) rad/sec. Find the position and the speed of the trammel
point P in frame & = {F; 1, J} after 2 sec, and again 2 sec later.

1.22. Part of an exit ramp for a highway shown in the figure is to be designed as a
plane spiral curve OA4 B whose radius r varies linearly with the angle 6. The design con-
ditions assume that a vehicle P enters the spiral road tangentially at point 4 with a

Problem 1.22.
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speed v. Afterwards, it maintains a nearly constant but unknown angular speed
0(¢)=w as it moves toward the exit B where its acceleration is assumed to have
magnitude a. Use the reference frame ¢ = {0; i, j}, and determine the radius parameter
ro at A required for the design expressed in terms of the assigned quantities v and «
alone. What is the velocity of P in ¢ expressed as a function of 6 alone?

1.23 Pins 4 and B are restricted to move in elliptical slots milled in a flat plate as
shown in the figure. Their movement is controlled by the motion of the slotted link C,
which during a period of its motion moves to the right at a constant speed of 3 in/sec.
Find the speed and the acceleration of the pin 4 when the slot is at x = 3 in. Determine
the motion x(A4, ¢) of the pin A expressed as a function of time ¢ such that x=0
initially.

3in/sec

Problem 1.23. e >

1.24. Find the velocity and acceleration of the center of the piston pin S of the
reciprocating engine shown in the figure. Assume that the crank rotates counter-
clockwise with a constant angular speed § = w, and that the length [ of the connecting
rod is much larger than the length a of the crank so that terms of order larger than a/l
may be neglected in the derivation.

Problem 1.24. ~— . / Piston Pin

1.25. The quick return mechanism of a milling machine shown in the figure con-
sists of a crank C, a drive arm 4, a connecting rod L, and a slider block S that holds
the cutting tool. The crank rotates counterclockwise at a constant angular speed § = w.
(a) Find the crank angles 6 for which S is at its extreme positions, and determine the
ratio of the time during which S moves to the left in its cutting stroke to the time dur-
ing which S travels to the right in its return stroke. (b) If the design efficiency E is the

Problem 1.25.
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ratio of the cutting stroke time to the full cycle machine stroke time, what is the design
efficiency for this machine? (c) Show analytically how the velocity of S as a function of
the crank angle 8 may be found. Then develop a computer program to evaluate the
normalized (nondimensional ) motion X' = x/a and the normalized velocity V = xX/aw of
S in terms of the crank angle 6 using a 15° step. Run the program to graph these
functions, and construct the so-called phase plane graph of V vs. X. Identify any
important features of the graphs. (d) Determine analytically the velocity of S in in./sec
when #=90° in a machine for which a=6 in. and w =240rad/min. Does your
program check with this result?

1.26. An insect / initially at the place x,=10jcm has at time ¢ a velocity
v(I, t) =6i + 5j + 12tk cm/sec in frame Y = { F; i, }. Find the motion and acceleration of
the insect in . How far has it traveled after 3.sec?

1.27. A particle Q initially at the origin in frame ¢ = {Q; i, } has an acceleration

a(Q, 1) = 61i — 4j +%cos (%t) k m/sec’.

If the initial velocity is v,=1i—4jm/sec, find the acceleration, the velocity and the
place occupied by Q after 2 sec.

1.28. A dust particle D at the position x, =1+ 2j+ 3k at the instant ¢, =1 sec is
blown in a storm to a constant acceleration a = 3i + j cm/sec? during an interval of its
motion in @ = {F;i,}. If the velocity of D at ¢, is v, =4i+ 5j —k cm/sec, what are its
position and velocity 10 sec later?

1.29. A bullet traveling horizontally pierces three sheets of paper spaced at equal
distance d apart, as shown in the figure. If the bullet decelerates at a constant rate with
magnitude a so that the measured travel time from the first sheet to the second is ¢,
and from the second to the third is ¢,, determine the deceleration of the bullet and
show that the ratio of its magnitude a to its speed v at the middle sheet is given by
afo=2(t,— 1,)/(B2+ 13).

7273

t=0 =1, t=t +t, Problem 1.29.

1.30. A proton P initially at O in ¢ = {O;i,} is in motion with an acceleration
a(P, t)= Ar’i + Bij+ Ck m/sec?, where 4, B, C are constants. At the instants ¢, =1 sec
and £, =3 sec it is observed that the velocity of P in ¢ has the values

(P, 1,)=4i + 12+ 10k m/sec, V(P 1) = 108i — 48j + 30k m/sec.

What is the position vector of the proton at these times?

1.31. The motion of a charged particle P is controlled by an electromagnetic field
so that it moves, as shown in the figure, along a circular cylindrical helix of radius b
and pitch p equal to the circumference of the cylinder base. The particle, initially at



Kinematics of a Particle 73
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Problem 1.31. i oty

Xo=bi, turns about the cylinder axis with a constant angular speed 6(s)=w as it
advances in the direction of the axis at a constant rate #(1)=A in the frame
¢ ={0;i,}. Find the motion, the speed, and the acceleration of P in ¢ as functions of
the time ¢ and in terms of the constants 4 and w only.

1.32. A small pin P moves in a straight slot milled in a flat plate of a certain
machine in which the pin’s motion is programmed to control the motion of a slotted,
horizontal link 4. In one instance, P is required to move the link from its position at
y=1cm with a velocity v,=3yj, as shown in the figure. Determine the motion,
velocity, and acceleration of P in the frame ¢ = {0;i, }, all programmed as functions
of the variable y alone. Show how the results may be expressed as functions of the time
t alone. Time units are seconds.

F—16 cm

Problem 1.32.

1.33. A material point § initially at rest at the place x,= —625i + 35j+ 50k m in
Y ={0;i,} is given an acceleration a(S, r)=36¢%i + 424j — 4k m/sec. Find in ¥ the
position, velocity, and acceleration of S after § sec.

1.34. A particle has the initial velocity vo=4i+jcm/sec at x,=1kcm in
¢ = {H;i,}. The acceleration is given by a(P, t) = (1 — 6:°) i + 8¢’j + 4k cm/sec®. Find
the velocity and the motion of P in ¢.

1.35. A bullet travels through a gun barrel of length / with a constant acceleration

from breech to muzzle where it leaves the gun with a speed . How long does it take
the bullet to travel through the barrel? What is the constant acceleration of the bullet

relative to the gun?

1.36. An electron E initially at rest at H in ¢ = {H;e,} moves on a straight line
with constant acceleration a so that it attains the velocity v, at a distance s, from H.
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Find the velocity of E as a function of s, the distance traveled, and determine the
magnitude of the acceleration of E.

1.37. A tiny spherical bubble of gas ascending through water has a speed that is
proportional to the square of its diameter d. The diameter is related to the depth y
below the surface by the rule yd® = ¢, a constant. Find the time required for the bubble
to reach the surface if initially its diameter is d, at the depth 4 where its speed is v,.

1.38. A shift mechanism of a typewriter consists of a square, stecl block B of side
2R that slides freely on a fixed vertical rod which passes through the shift lever 4. If
the block is triggered from its rest position at y =0 with acceleration a = c(4 — )77,
where ¢ is a constant, find the velocity with which the block strikes A.
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Problem 1.38.

1.39. The slotted link A shown in the figure controls the motion of a small pin P
to move in a parabolic groove 3x = y*—9, which is milled in a flat plate. The link A4,
initially at rest at y =3 cm, has a controlled acceleration a(4, t)= —4yj cm/sec’. Find
the velocity and acceleration of the pin P in the Cartesian frame ¢ = {O;i,} at the
instant when y =2 cm.

'l 3cemibe— Problem 1.39.

1.40. A jet seaplane has a touchdown speed of 100 mph when making contact
with the water. The hull structure of the aircraft fuselage is to be designed so that the
landing speed is reduced to 25 mph in a distance of 1/4 mile in time 7. Assume that the
deceleration of the seaplane is proportional to the square of its speed through the
water: § = —Cs2, where the design parameter C depends on the shape of the hull, the
weight of the aircraft, and average water wave conditions. Determine the value of C,
and find the time © during which the speed is reduced as described.

1.41. A rope ACB is attached to a box B, passes over a pulley of negligible size at
C, and slides over a circular surface of radius 15 ft as shown in the figure. The free end
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Problem 1.41.

of the rope is at A when the box rests on the ground. If the end 4 has a constant
acceleration of magnitude 10 ft/sec’, determine the time required for the box to reach
C

142. A particle P initially at x,=5j in ¢={0;i,} has a velocity
v(P, t) = w sec O(a sec Bi + b tan 0j), where a, b are constants and §=w is a certain
constant angular speed. Find the acceleration of P in ¢ and determine the path along
which the particle moves such that v(P, 0) = awi. Sketch the trajectory of P.

1.43. Two particles P, and P, are in uniform motion with velocities v, and v, in
space. At a certain instant the vector of P, from P, is D and their relative velocity is
v=v,—v,. If v, and v, are the respective components of v parallel and perpcndicu]ar
to D, show that when P, and P, are closest together their distance of separatlon is
Dv,/v and that they arrive in this position after an interval of time Dv,/v?, where
v=|v|.

1.44. A cam shown in the figure is to be designed with a 3-cm rise to produce two
continuous oscillations of a spring-loaded push rod for each revolution of the cam. The
cam turns about its axis at £ with a constant, clockwise angular speed w =4 rad/sec.
Construct the equation for the cam profile r(6) that will produce a sinusoidal motion
of the push rod such that r(0)=2cm and v(0)=0 at §=0 initially. Determine the
maximum velocity and acceleration in frame @ = { F; i, j} of the contact point P on the
push rod. How would you design the cam to produce three oscillations of the push rod
for each revolution of the cam? And for # oscillations? Sketch the cam profile for n=3.

(Sprine Oscilatory

Problem 1.44.

1.45. The tip of a cutting tool has a straight line motion in which the cutter starts
from rest and increases its speed from 0 to v* with a constant acceleration a*; it retains
this constant cutting speed for a time p, as shown in the figure, and ultimately comes
to rest at the end of its stroke by a constant deceleration a. The total length of the tool
stroke is /. Show that the total time t required for the full machine stroke is given by

I v*(a+a*)

T =
v* 2aa*
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Litl T ———}TZ Problem 1.45.

Determine the length A4 of the cutting stroke and the time p required to execute it.
What is the design efficiency relation (see Problem 1.25) for the case when
a=a*=150*%/17 Assume that the full cycle machine stroke time is 21.

1.46. A cam mechanism similar to that described in Fig. 1.9 is to be designed to
control the motion of the spring-loaded push rod to have a constant acceleration a
during its forward motion for e [0,n] and a constant deceleration of the same
magnitude during its return motion for 6 [n, 2x7]. Of course, as a consequence, the
acceleration will not be well defined at the stroke extremes. The cam must rotate with
constant, clockwise angular speed # = ®; and the push rod must be at instantaneous
rest at @ =0, where x(P, 0)=ai, and at #=2x. (a) Determine the cam rise b at 0 =nr;
and find the required continuous cam profile r(6) expressed in terms of the geometrical
cam design parameters. (b) Sketch the graphs of the motion, velocity, and acceleration
of the push rod for 8 € [0, 2z]. (c) Sketch the shape of the cam, and discuss briefly any
problems you may foresee with this design.

1.47. Suppose that the design specifications for the cam described in Example 1.10
are altered to require that the return motion of the push rod be uniform but only half
as rapid as its forward motion, while the radius ¢ and the angular speed @ remain the
same as before. (a) What is the ratio of the stroke travel time of the push rod in its
forward motion to the travel time in its return motion? How are these times related to
the angular rotation of the cam? (b) Find the continuous cam profile () that can
produce the motion, and determine the rise b. (c) Sketch the cam geometry, and graph
the motion, velocity, and acceleration of the push rod as functions of 8 € [0, 2z]. Do
you foresee any potential problems with this design?

1.48. A smooth cam that rotates with a constant, clockwise angular speed o is to
be used as a quick return device to produce in one revolution a uniform forward
motion of a control rod and a uniform return motion which is three times faster. (a)
What is the ratio of the angle of rotation of the cam during the forward motion of the
control rod to the angle of rotation during its return motion? (b) Find as a function of
the rotation angle 6 the continuous cam shape r(f) that can produce the motion with
rise b and r(0) = a. (c) Graph the motion, velocity, and acceleration of the control rod
for 6 € [0, 2n], and sketch the cam profile.

1.49. A drop cam is used in an automatic hole punch operation for cardboard.
The cam turns with a constant, clockwise angular speed , and it drives a follower rod
which is attached to a spring-loaded punch head having stroke length &. In the clearing
interval 0<0<n, the spring is compressed further as the punch is raised with a
uniform rectilinear motion to the height » at ==, and the punched work piece is
removed from the machine. During the loading interval = < 0 < 2n, a new work piece is
set for punching as the punch head is lowered to the face of the fresh piece with a
uniform motion which is half as rapid as before. At this point, the punch head is at a
height 4 from its initial position at a from the axis of rotation. The hole punch is
actuated suddenly by the spring-driven drop action induced at § =2r by the continu-
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ing cam motion, and the cycle is repeated. (a) Find the height 4, the rise b, and the
shape r(8) of the drop cam, continuous at 8 =z, which can produce the punch motion.
(b) Determine the ratio of the operation time expended in the clearing interval to the
time expended in the loading interval. (c) Sketch the cam profile. (d) Graph the
motion, velocity, and acceleration of the punch for 0 <8< 3n. (e¢) Discuss potential
problems that may arise from use of this device.

1.50. In another drop cam design for a hole punch operation similar to that
described in the previous problem, the punch is raised into contact with the work piece
at a height 4 during the forward stroke in which the continuing, constant rotational
motion w of the cam in the interval 0 < 6 < = drives the punch through the cardboard.
At the end of this punching stroke, which has total length b at §==n, a strong
retracting spring is suddenly actuated at € ==z by the drop in the cam shape. Con-
sequently, the punch is cleared instantaneously from the work piece to the height 4 at
0 =mn, and the spring motion returns the punch control rod to its initial safe starting
position at 6 =2n where the cam surface is continuous with radius a. The punching
motion is to be uniform but twice as rapid as the uniform return motion following its
instantaneous retraction from the hole. (a) Find the height # and the stroke length 5.
(b) What is the ratio of the time expended in the forward stroke to the time expended
in the return stroke? (¢) Determine the motion, velocity, and acceleration of the punch
head, and sketch their graphs and the cam shape.

1.51. The helical motion of a particle P in n={0;i,} is given by
x(P, t)=2(sin 2ti+cos 2t j) + 3tk cm.

(a) Determine the acceleration of P at = m/3 sec. (b) What is the speed of P after 37
days? (c) Find the intrinsic acceleration of P in n, and determine the radius of cur-
vature of the path.

1.52. Consider a particle P in motion along an arbitrary simple curve in the plane
Cartesian frame @ = {O;1, j}. Show that the velocity v=xi+ yj and the acceleration
a=xi+ jj of P when projected upon the intrinsic basis directions yield equations
(1.70) and (1.71), respectively. Thus, (1.70) and (1.71) are the velocity and acceleration
of P in frame &, but referred to the plane intrinsic frame ¥ = { P; t, n} following the
particle. Hint: Write i and j in terms of t and n.

1.53. (a) Apply (1.70) and (1.71) to derive the formulas in (1.75) for the tangential
and normal components of the intrinsic acceleration vector and for the curvature of
the path. (b) Suppose that in a plane Cartesian frame @ = {0; 1, j} the particle has the
following velocity and acceleration at a certain point 4 on its path:

v=2./5Qi+j)ft/sec, a=2(1+4./5)i+4(/5-1)jft/sec?

Find the intrinsic velocity and acceleration at A, and determine the curvature of the
path at 4. The student may check his solution by comparison with Example 1.13.

1.54. The motion of a particle P along a plane curve is given by
x(P, t)=x(t)i+ y(¢)j in a plane Cartesian frame @ = {0; i, j}. Use equation (1.75¢) to
derive the following relation for the curvature of a plane curve:
yE— %

Let the plane curve be expressed as y = y(x) and identify x =7 Show that the above
formula reduces to the first part of (1.81). Derive the second part of equation (1.81).
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1.55. At a certain instant f,, the velocity and acceleration of a particle P in
@ = {F;i,} are given by

V(P, 1) =3i+4j+ 12k ft/sec,  a(P, ty)=3i+ 5j + 3k ft/sec’.

Find at the instant ¢, the intrinsic velocity and acceleration of P in @, and determine
the radius of curvature of the path at the place occupied by P at the instant z,.

1.56. A particle P moves with a constant speed of 27 m/sec along a parabolic tra-
jectory y= \/5 x®. What is the acceleration of P as it passes the point at x=2m?

1.57. Find the intrinsic velocity and acceleration of the pin P in the device
described in Problem 1.16 when the pin is at x =3 in. What is the curvature at this
place?

1.58. The guide pin P of the bell crank device described in Fig. 1.15 has a speed of
10 ft/sec and a rate of change of speed of 20 ft/sec” at the point 4. What is the angular
speed w of the arm OP when P reaches point 4?

1.59. The slotted link A4 of the device in the figure for Problem 1.39 controls the
motion of the pin P to move with a constant speed of 25 cm/sec in the parabolic
groove 3x = y*—9. Find as functions of y the intrinsic velocity and acceleration of P.
Determine the velocity and acceleration of the link A4 in the Cartesian frame
@ ={0;i,} at the instant when y =2 cm.

1.60. A small projectile S is fired in the direction e=5/13e, + 12/13e, with an
initial muzzle speed of 130ft/sec. If the projectile has a constant acceleration
a(S, t) = —Se, — 30e, ft/sec’ in the rectangular Cartesian frame ¢ = {F;e.}, find the
radius of curvature of the trajectory after 4 sec. What are the intrinsic velocity and
acceleration at this instant?

1.61. A fluid particle which moves along a simple curved path in a certain flow
experiment passes the point A with a speed of 18 m/sec; and at 27 m along the curve
from A, it decelerates to a speed of 9 m/sec at the point B. The experiment reveals that
the deceleration of the particle measured along the path is very nearly proportional to
the distance traveled from point 4; and measurements show also that the acceleration
of the fluid at point B has a magnitude of 90 m/sec’. Find the radius of curvature of
the path at B.

1.62. A crank device shown in the figure moves a small pin P in an elliptical slot
milled in a flat plate fixed in the Cartesian frame @ = {F; I, }. At the point 4, the pin
has a speed of 15 cm/sec and a rate of change of speed of 10 cm/sec” along the track.
Find the acceleration of P referred to @ at the instant described.

Lf:jm me ¢

Elliptical Slot

777, /'/‘77'7’/1//{7 77TIITTTT Problem 1.62.

1.63. Suppose that the pin P of the crank device of the previous problem‘has a
constant speed of 15cm/sec along the track. (a) Where along the slot is the
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acceleration greatest and least, and what are these extreme values? (b) Find the
angular velocity of the crank at these points.

1.64. A particle travels with a constant speed of 4 ft/sec along the path shown in
the figure. (a) Find the acceleration at the points 1, 2, 3, and 4 in frame ¢. (b) Draw a
graph of the magnitude of the acceleration as a function of the distance traveled from
the point 4 to the point B along the path. What can be said about the acceleration at
points along a path where the curvature changes abruptly?

Problem 1.64.

1.65. A particle has a motion given by 12x(P, ¢) = t*i+ 72j+2(4> —9*)k in
¢ = {B;i,}. Find the velocity and acceleration of P in ¢ at the instant =3, How is
the velocity vector related to the acceleration vector at this instant? What does this
relationship imply about the curvature of the path? Find «(¢), and thereby confirm
your conclusion.

1.66. A particle P moves on a twisted cubic trajectory so that
X(P, t)=6ti + 3% + £’k

in the usual Cartesian frame. Find the velocity and acceleration of P referred to the
intrinsic frame.

1.67. An electron emitted from the cathode of a television tube has a helical
motion x(E, t)= R(cos ¢ i + sin ¢ j) + Pgk, where P is a constant proportional to the
pitch, R is the constant radius of the helix, and ¢(¢) is the variable angle of rotation
about the helix axis. Find the curvature of the helix and the intrinsic velocity and
acceleration of E.

1.68. The motion of a fluid particle P is given as x(P, ¢) = 2% + 3j — 2tk. Find the
radius of curvature of the trajectory of P as a function of time ¢, and determine the
intrinsic velocity and acceleration of P.

1.69. A particle has a velocity v(P, t)=(2bc)"? t%i — btj+ c£’k. What are the
velocity and the acceleration referred to the intrinsic frame?

1.70. An atomic particle P, initially at rest, has an acceleration
a(P,1)=24-3%+2k

in ¢ ={0;1,}. Find the intrinsic velocity and acceleration of P in ¢.

1.71. The center of mass point P of an amusement park vehicle moves on a space
curve defined by Cartesian variables x(¢) = 2, y(¢) = >, z(¢)=>/3. (a) Find the intrin-
sic velocity and acceleration of P, and determine the radius of curvature of its path. (b)
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What is the distance traveled by the vehicle in time ¢? (c) Calculate x(P, 1), v(P, 1),
a(P, 1), R(1) and s(1), after one second.

1.72. A pin P of a mechanism shown in the figure moves with a constant tangen-
tial acceleration o along a circular groove of radius r. (a) Determine as functions of
time ¢ the angular speed w(t)=6(t) and the angular position 6(z) of P such that
initially @(0)=w, and 6(0)=86,. (b) Show that for 6,=0 and f=a constant,
®* = o} + B0 relates the angular speed to the angle 6. Identify 8. (c) Find the intrinsic
velocity and acceleration of P as functions of 6 alone.

Problem 1.72.

1.73. A trammel valve mechanism shown in the figure consists of a control rod
AP of length 8 cm hinged at 4 and B to blocks that slide in the cross slots. The con-
stant distance between 4 and B is 2 cm, and the control rod rotates counterclockwise
with a constant angular speed § = w = 2 rad/sec. Find the velocity and the acceleration
of the trammel point P referred to the intrinsic frame ¢ = { P;t,n} when the rod is in
the position at § = 45°. Derive for this position the expressions for t and n in terms of
&={FLJ}.

Problem 1.73.

1.74. An electron E emitted from the cathode C of an oscilloscope has a motion
x(E, t) = a(cos wti + sin wfj) + awtk in frame ¢ = {C;i, }. Here a and w are constants.
Find the velocity and acceleration of E referred to the intrinsic frame y = {E;t, };
determine the intrinsic basis {t, }; find the radius of curvature of the trajectory at E at
time ¢; and describe the path.

\OQ

e
: 1

: “FE}} Oémlloscope
1.75. A particle P, initially at F, has the velocity v(P, ) = 3£%i + 64j + 6k cm/sec in

&= {F,i,}. (a) Find the velocity and acceleration of P referred to the intrinsic frame
W = {P; t,} at time ¢. (b) What is the location of P in & after 2 sec? What is the radius

Problem 1.74.
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of curvature of the path at this location? Describe the nature of the path after an
infinitely long time.

1.76. A ship S shown in the figure is sailing on a circular arc of radius r with a
tangential component of acceleration proportional to its speed, which initially was v,,.
Find the intrinsic velocity and acceleration of the ship as functions of the time ¢. Deter-
mine the distance traveled in time ¢.

Problem 1.76.

1.77. Find the intrinsic velocity and acceleration of the ship described in the last
problem expressed as functions of the distance s traveled along the arc. Determine the
time ¢ required to move this distance.

1.78. The center of mass point Q of an object moves parallel to a surface whose
profile may be approximated by the curve y=asin wx shown in the figure. (a) Find
the constants g and w. (b) If Q has a speed of 9 ft/sec and a tangential acceleration of
24 ft/sec® at the point A, what is its intrinsic acceleration at A? (c) What is its
acceleration at A4 referred to the fixed frame ¢ = {F;i,j}? (d) Derive expressions for
the velocity and acceleration of Q at point B.

1/17.&
F - X
1? ft“. i -JW
—2ft

1.79. An electron moves in a plane in such a manner that at each point of its path
the intrinsic components of the acceleration vector are constant. Prove that the elec-
tron moves on an equiangular spiral R=ue? in which «, p are constants, R is the
radius of curvature, and 0 is the angle that the tangent line to the path makes with the
i direction, namely, t-i=cos 8 in ¢ = {0;1i, j}.

Problem 1.78.

1.80. (a) Show that the motion x(P, t) = A cos pt + B sin pt with constant vectors
A and B is the solution of the vector differential equation % + p*x = 0. (b) Consider the
special case when A = ai and B = gj. Show that the motion x(P, t) may be written as a
similar function x(s(¢)) of the arc length parameter s(t); hence, x(s) is a solution of the
differential equation x” + x/a® =0, where ' = d/ds. Determine the curvature and torsion
of the path by inspection of the results, and then by differentiation based upon (1.109).

1.81. Use the intrinsic rotation equations (1.108) to show that the torsion of a
space curve is given by the formula

_vxa-a
_|vxa|§
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in terms of the physical quantities v, a, and a. Express this relation and (1.75¢) in terms
of time rates of change of the position vector; then, bearing in mind the intrinsic
relation x(P, 1) = x(s(t)), use these formulas to derive (1.109).

1.82. A particle P has a motion x(P, t)=*/3i+ ¢j+ 2tk in &= {F;i,}. (a) Find
the intrinsic velocity and acceleration of P. (b) Use the result of the previous problem
to find the torsion of the path, and determine the curvature. (c) Express the intrinsic
basis vectors (t, n, b) in terms of the basis vectors (i, j, k) of &.

1.83. The fluid particles in a plane corner flow move in frame = {O;i,} along
the paths xy = ¢, a constant. (a) Find as a function of x the hodograph motion of the
fluid paticle P that passes the point (1, 1) with a constant speed of 4 ft/sec and having
a positive component x in . (b) Derive the standard equation for the hodograph, and
sketch graphs of the trajectory of P and its hodograph. (c) Find the intrinsic velocity
and acceleration of P. (d) What is the hodograph velocity of P?

1.84. A particle P has a motion x(P, r) =1+ m:", where I, m are constant vectors
and # is a positive integer. (a) Describe the path of P. (b) Find the hodograph motion
and velocity, and describe the hodograph.

1.85. An electron E, initially at rest at O in frame u = {O;i,}, has an acceleration
a(E, 1)=(k + wy)i— wxj, in which k and w are constants. (a) Find the velocity and
the motion of E as functions of time in px. Describe the trajectory of the electron in u.
(b) What is the hodograph motion? Describe the hodograph. (c) Write a computer
program to graph the particle path and the hodograph for the four combinations of
the values k=04, 1 and w =35, 10.

1.86. A particle moves on the path y=asinwx with a constant horizontal
velocity component. Here @ and w are constants. Find the hodograph motion and its
velocity. Describe the hodograph.

1.87. (a) The smooth function k(x)=x" is to be turned on at x=1. Show that
H(x)=x2(x—1)° may be written as a polynomial H(x)=Y2_, a,{x—1>* of degree
2, where a,are constants. (b) More generally, show that for constants a and b and for
positive integers n the singularity function

n

Hx)=(x—b)"(x~a)’= Y a{x—a)*

k=0

is a polynomial of degree n in the singularity functions {x —a)>*:

H(x)= <xfa>"+n(afb)<x—a)"‘l+%(a—b)2<x—a>"_2
PP ) M ) M O NSNS IO

1-2- - -r
+nla—b)"" W x—ad' +(a—b)'{x—ad".
Use this rule to check the special case in (a). (c) Write the polynomial expression for
the parabolic function shown in Fig. 1.21.

1.88. Find by two methods the derivatives of the several functions identified as
H(x) in the last problem. Show that the results are the same.

1.89. Find by two methods the integrals F{x)=[* _ H(x)dx for the several
functions identified as H(x) in Problem 1.87. Show that the results are the same.
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1.90. The rectilinear speed of a particle P in two situations is expressed as a
smooth function § = v sin(2zs/l) in which s(¢) denotes the distance traveled by P, and v
and [ are constants. In the first case, the motion begins instantaneously at the origin
s=0; and in the second instance, it starts suddenly at s =a. Express these statements
in terms of singularity functions, and find for each case the acceleration of P.

1.91. The acceleration a(P,t)=a(¢)i of a particle P, initially at rest at
X, = 15i + 6j + 25k ft, is described by the graph shown in the figure. Use singularity
functions to find the motion and velocity of P as functions of time.

a(t)

60 ft/sec’

Problem 1.91. t

1.92. Starting from rest at the origin, a particle P has a rectilinear motion x(t)
with speed given by v = —2x + g(¢), wherein the function g(¢) is defined by

0 for <0
g(t)= { cost for O<t<m/2
&M=t for t>mn/2.

Find the motion of P and determine its speed and acceleration as functions of time
alone. Hint: Multigly the first-order differential equation dx/dt + 2x = g(z) by the
integrating factor e*’, and integrate the result. Of course, other methods are possible.

1.93. A spring-loaded push rod of a certain automatic hammer mechanism is
driven by a drop cam that turns with a constant, clockwise angular speed 8 = w. The
hammer is at rest instantaneously at 0 =0 and at 2n where the hammer motion occurs
suddenly due to the spring action at the cam drop. The cam profile function r(f)
satisfies the conditions r(0)=a, r(n)=a+b, where a and b are constants; and the
cam-driven hammer is designed so that it has the acceleration graph a = a(#) with con-
stant magnitude « as shown in the figure. (a) Find with the aid of singularity functions
the motion and the velocity of the hammer as functions of 8¢ [0, 2n], draw their
graphs, and sketch the shape of the cam needed. (b) Investigate the solution without
the use of singularity functions. (c) Discuss the discontinuities in the velocity and
acceleration at § =2m.

a(g)

a-

.\\ﬁz
A\

Problem 1.93. B R

1.94. Use singularity functions to solve Problem 1.46. Begin with the equation for
the acceleration accounting for the unknown strengths of the discontinuities at the end
points in the motion. Find these strengths and graph the acceleration on 0<6 < 2n.
What is the jump in the velocity at 0 ==n?
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1.95. Solve Problem 1.47 with the aid of singularity functions. Show that the
results include those obtained before. Find the acceleration in terms of singularity
functions and graph the result showing the strengths of the discontinuities.

1.96. Derive the profile of the cam described in Problem 1.48. Use singularity
functions.

1.97. Employ singularity functions to investigate Problem 1.49. Discuss the dis-
continuities that arise at § = 2x, and determine their strengths. What can be said about
the acceleration?

1.98. Find with the aid of singularity functions the cam profile required in
Problem 1.50. Express the result in terms of the geometrical parameters, and discuss
the behavior of the discontinuities at 0 = . Describe the acceleration response.

1.99. Consider the function f{x){x—a}°= {0 if x <a; f(x) if x>a}. Now sup-
pose that f(x) = (x —a)" itself. Then for x > a, f(x)= 1. Hence,

S x—ad’={x—ad)(x—ad’={0if x<a; 1 if x>a}.

That is, the square of the unit step function is equal to itself:
(x—a){x—a)’=(x—a)’

(a) Show that for integers n, m>0
<x_a>n<x‘_a>m=<x7a>n{m.

(b) A particle P is moving with constant speed v along a smooth path having a con-
stant curvature, when a tangential braking force is applied suddenly at time t to
decelerate the motion at a constant rate « along the path. Find in terms of singularity
functions the intrinsic velocity and acceleration of P. Determine the time after braking
needed to bring P to rest, and find the total distance traveled.

1.100. The oscillograph record of the rectilinear acceleration of a slider block of a
certain mechanism during 10 sec of its operation is shown in the figure as a function of
time. The block starts from rest at r=0. (a) Express the acceleration in terms of
singularity power functions, and find the motion and the velocity. (b) Determine the
distance traveled by the block after 10 sec. (c) What is its speed after 10 sec? Check
this result by relating it to the area under a(t) graph.

alt)
cm/sec’?

0.60-=----------

0124 JPNJ Problem 1.100.
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Kinematics of Rigid Body
Motion

2.1. Introduction

We recall that a body 4 is a collection of material points P: # = { P}. In
general, all of the particles of a body may change their relative positions in %,
and in this case the body is said to be deformable. At the other extreme, a
rigid body is a body with the property that the straight line distance between
every pair of its particles is constant in time. This idealization of a body that
cannot be deformed, however great may be the forces and torques that act
upon it, is so intuitively natural that it is often used without mention. The
reader surely will recognize that our basic definition of a reference frame
embodied the concept of rigidity. In fact, there were several occasions in
Chapter 1 where the concept was quietly invoked. In particular, it was tacitly
supposed for the mechanical device shown in Fig. 1.3 that the radius R of the
wheel and the length L of the hinged rod did not vary with time. These are
typical examples of rigid bodies whose motions will be investigated in this
chapter. The kinematics of a rigid body in general motion in space will be
studied. The main objective will be to learn how the velocity and acceleration
of the particles of a rigid body are related to the translational and rotational
parts of its motion.

The theory of the motion of a rigid body rests upon a fundamental
theorem due to Euler (1775). He proved that when a rigid body is rotated
about a fixed point, all particles situated upon some line through that point
return to their initial positions upon completion of the displacement. Thus,
the infinite variety of displacements by which a rigid body may be brought
from one configuration into another consists always of a translation accom-
panied by a rotation about a line. Chasles (1843) used this result to prove that
among these general displacements there exists one of unparalleled simplicity.

85
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He showed that the most general displacement of a rigid body may be
represented uniquely by a rotation about a line together with a translation
along that line. Study of these important theorems and some other advanced
topics concerning finite rigid body motions will be reserved for the next chap-
ter. Our immediate objective in this chapter will be to derive from the exact
finite displacement vector equation special representations for the velocity and
acceleration of the particles of a rigid body that separate and exhibit clearly
the translational and rotational parts of the body’s motion. Afterwards,
several sample applications of these results will be presented. We shall con-
clude our study with discussion of some useful theorems related to instan-
taneous screw motions. Let us begin with a few definitions of terms needed in
our study.

2.2. Displacements of a Rigid Body

Let a rigid body # undergo an arbitrary displacement in space relative to
an assigned Cartesian frame @ = {O; e, }, as shown in Fig. 2.1; and let X and
X denote the respective position vectors of a particle P in its initial and final
positions from O. Then, regardless of the actual motion of P between these
positions, the vector d(P)=X —X defines the finite displacement of P in &.
Hence, d(P) is named the displacement of P relative to @.

A motion of # in which every material point sustains the same dis-
placement d is called a parallel translation, or briefly, a translation. In this
case, d(P)=4d is the same vector for every particle P in #4. Therefore, any
arbitrary motion that the body may have suffered in reaching its terminal
state is the same as a motion in which its particles traverse parallel, straight
line paths, as shown in Fig. 2.1, though the body need not move on that line
at each instant. (See Problem 2.1.)

Whenever the initial and final spatial position vectors of at most one
point P are the same, then d(P)=0 only for that one point. The arbitrary
motion that the body may have experienced in achieving its end state is
indistinguishable from any other having the same end state and for which P is

Initial
Configuration

Figure 2.1. Displacement of a particle
and parallel translation of a rigid
body.

Final
Configuration
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assumed to be fixed in &; hence, the displacement of # is described as a
rotation about a fixed point. When P is indeed fixed in @, the trajectory of any
particle of the body is a curved line on the surface of a sphere whose radius is
the particle’s distance from P.

Similarly, an arbitrary motion in which the spatial position in @ of every
point on some line L is unaltered is the same as a motion in which L is
assumed to be fixed in @; and the displacement is called a rotation about a
fixed line. The line L is titled the axis of rotation. Our first objective is to
describe the displacement d(P) of a particle P of a rigid body due to a
rotation about a fixed line.

2.3. Rotation about a Fixed Line

The vector equation for the displacement of a particle P in a rotation of a
rigid body around a fixed line will be derived in terms of three specified quan-
tities: x, the initial position vector of P; a, a unit vector that defines the axis of
rotation; and 6, the angle of the rotation. Let the body be turned through an
angle 6 about a fixed line OA4 in a right-hand sense with respect to a unit axial
vector a directed from O to A, as shown in Fig. 2.2; and consider a particle P
initially in a plane K which is perpendicular to the axis at 4. Since the body is
rigid and OA is fixed, the trajectory of P in the plane K is a circle centered on
the axis of rotation. The displacement of P is described by

d(P)=X—x=p—p, (2.1)

where x{%} denotes the initial {final} spatial position vector of P from O,
and p{p} is the initial {final} radius vector of P from A in &= {O;e,}. The
first equality in (2.1) is just the definition of the displacement of P in any
motion whatever; it is the second equality that distinguishes the displacement

Figure 2.2. Geometry for the description of
a finite rotation about a line.
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as a rotation about the vector a. To exhibit the rotational aspects of the dis-
placement, the last term in (2.1) must be expressed in terms of the specified
quantities x, a, 6 mentioned before.

Since |p| = |pl = p, the radius of the circular path of P, it is clear from the
geometry in Fig. 2.2 that

p=rpp (2.2a)

and

P =p(cos OB + sin ), (2.2b)
where B is the unit vector from 4 to P and the unit vector y is defined by
vy=axp. (2.3)

It is plain from their definitions that p, §, and y are independent of 8. Thus,
upon putting (2.2) into (2.1), we reach a formula that exhibits exactly the
dependence on the angle of rotation:

d(P)=%X —x=psin 0y — p(1 —cos 0)B. (24)

It remains to express pp and py in terms of the assigned quantities x and a.

Let r = |r| @ denote the vector from O to the center of the circle at 4 in
Fig. 2.2. Since |r| = |x| cos Yy = x - @, where V is the angle between x and @, we
may write r = (x - a)a. It follows that

p=X—r=x—(x-a)o. (2.5)

Using (2.5) in (2.2a) and (2.3), noting that a-a =1, and recalling the expan-
sion rule for the vector triple product (see (A.14) in Appendix A), we obtain

pp=ax(xxa), PY=UXX, (2.6)

Finally, substitution of (2.6) into (2.4) yields the desired relation for the dis-
placement d(P) of a particle P of a rigid body in its right-handed rotation
through an angle 6 about an axis @ fixed in the body:

dP)=Xx—x=axxsin 0+ (1 —cos f)a x (a x x), (2.7)

wherein x = x(P) and & = %(P) are the initial and final position vectors of P
from O in @ = {0;e,}.

The result (2.7) may be visualized graphically. It is seen in Fig. 2.3a, and
it is also evident from (2.6), that the vector a x x is tangent to the circular
path of P at x, and the vector @ x (a x x) is directed from P at x to the center
of the circle at 4. We thus see in Fig. 2.3b that the rotational displacement d is
the vector sum of a tangential displacement a xxsin@ and a normal dis-
placement (1 —cos f)a x (@ x x).
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(1-cosf)ax{axx)

P axxsin @

{b)

Figure 2.3. Tangential and normal displacement vectors associated with the displacement due to
a rotation about an axis.

For future use and simplicity, it is convenient to rewrite (2.7) in the
abbreviated form

d=%—x=Tx, (2.8)

where T, which is named the rotaror, is presently identified as the vector
operator

T=ax[ Jsinf+(l—cosBlax(ax[ ]) (29)

Equation (2.8) shows that the rotator transforms the initial position vector of
a particle into its displacement vector due to a finite rigid rotation about a
fixed line.

If a = qa is the position vector of a particle on the axis of rotation, then

Ta=0 (2.10)

follows from (2.9). This merely confirms the physical constraint that points on
the axis of rotation experience no displacement.

Let us observe that T is a linear operator, namely, it has the basic
property that

T(Ax + puy) = ATx + uTy, (2.11)

in which A, p are scalars and x, y are vectors. This fact together with (2.10)
may be used in an easy demonstration that the displacement of a point P due
to a rotation about a fixed line is independent of the choice of reference point O
on the axis. We let d = Tx denote the displacement due to the same rotation of
P but with position vector X from any other point O on the axis, as shown in
Fig. 2.4. Then, with the aid of the rule (2.11) and by use of (2.8) and (2.10),
we see that d —d=Ta=0 because the vector a=x—x is parallel to a.
Therefore, the previous. statement follows. In fact, the same thing is seen more
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Figure 2.4. Rotational displacements of
P for two points on the axis.

A

directly from (2.1) because p— p is independent of the location of O on the
axis.

More important and less obvious applications of the rotator as a linear
operator will be encountered in the next chapter. A typical calculation of a
displacement vector is illustrated next.

Example 2.1. A satellite tracking antenna fixes on a target by rotating
through an angle 6 =tan~'3/4 about an axis @ in the horizontal plane in
frame & = {F; 1, }. The antenna horn H initially is in the configuration shown
in Fig. 2.5. Find the displacement of H and determine its final location in &.

Solution. The problem geometry is shown Fig. 2.5a. We see that
0 =cos45°1+sin45° J=(\/2/2)A+ J) and x(H, t}=3a + 6K m. Thus, bear-
ing in mind (2.7), we compute
axx=ax6K=3./2(1-J)m,
I J K
ax(axx)=|/22 J22 0|]=—6Km
3/2 -3./2 0

Figure 2.5. Finite rotation of a satellite tracking antenna.
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Moreover, tan 6 =3/4 implies that sin 6 =3/5, cos 6 =4/5. Substitution of
these data into (2.7) yields the displacement of the antenna horn:

d(H):i—x:gg/E(I—J)——g—Km.

The final position of H in @ is now given by X(H)=d(H)+ x(H); we find

ﬁ(H)=—31—\({§(111—J)+25‘—1Km.

2.4. The Imbedded Reference Frame

Because the distances between the particles of a rigid body are unaltered
when the body moves, lines of particles remain lines and angles between all
pairs of such lines are preserved. In particular, a triad of perpendicular
material lines remains orthogonal; so these imbedded lines may serve as a
Cartesian reference frame that moves with the body. More generally, any
reference frame whose coordinate lines are fixed relative to a rigid body is
known as an imbedded or body reference frame. The origin of the imbedded
frame is named the base point.

Although the imbedded frame moves with the body, no part of the
imbedded frame actually need be within the body or contain any material part
of it. The base point, in particular, belongs to the body only in the sense that
it moves with it. A base point fixed at the apex of the frustum of a cone- or
pyramid-shaped body, or one chosen at the center of the void of a doughnut-
shaped rigid body, are examples of base points that are not material points;
but they certainly move with the body.

Obviously, the three coordinates of a particle of the body remain the
same when referred to the imbedded frame, whereas the three spatial coor-
dinates of the same particle will vary as the body moves about. It is important
to know the number of independent coordinates required to specify the
location and orientation of a freely moving rigid body in the spatial frame @.
This number, which is called the degrees of freedom of the body, can be easily
determined. We begin by considering an imbedded triangle. Each vertex par-
ticle may be located by its three Cartesian coordinates in @; but because the
sides of the triangle are of fixed length, which we may measure initially, we
have also three distance equations of rigid constraint that relate the nine ver-
tex coordinates. Thus, the number of independent coordinates for the three
particles is six. Of course, any other particle also is identified by three coor-
dinates. But none of these is free, because there are three additional indepen-
dent rigid constraint equations that specify its fixed distances from the initial
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vertex particles. Thus, no more than six independent coordinates are required
to specify completely the configuration of a rigid body in @. Therefore, a rigid
body has no more than six degrees of freedom. Naturally, additional con-
straints on the motion of a body will reduce its degrees of freedom. Suppose,
for example, that one point of the body is fixed in @; then the degrees of
freedom are reduced to three. (How many degrees of freedom are there when
two points are fixed?) And, similarly, a rigid disk which is constrained to
move in a plane also has at most three degrees of freedom. (How many would
it have if its center is also constrained to move on a specified plane curve?)

The six independent coordinates of an unconstrained body may be
chosen in a variety of ways. For example, the three coordinates of any par-
ticle, or any base point, and any three independent angles that specify the
orientation of the body frame relative to the spatial frame ¢ may be selected.
This natural choice is basic to the following description of the most general
displacement of a rigid body.

2.5. The General Displacement of a Rigid Body

The mathematical description of the decomposition of the general dis-
placement of a rigid body into its translational and rotational parts will be
outlined here. Let us imagine that the body shown in Fig. 2.6 undergoes an
arbitrary motion in space that carries it from a given initial configuration into
another configuration relative to an assigned spatial frame @ = {F;I,}. Con-
sider an imbedded frame ¢’ = {O;i}} which is parallel to & when the body is
in its initial configuration. The corresponding position vectors of a particle P

" Initial
3 " Configuration

7

Terminal
Configuration

Figure 2.6. Finite displacement of a rigid body.
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are denoted by x in ¢’ and X in &. After the displacement of the body, P has
a new spatial position X in & but it retains the same position with respect to
the imbedded, body frame. The point O initially at B in frame @ is displaced
to O’ at B, as diagrammed in Fig. 2.6. Finally, let us consider in the terminal
configuration another auxiliary frame ¢ = {O’;i,} which is parallel to @,
hence also to the imbedded frame ¢’ in the initial configuration. If X denotes
the position vector of P from O’, relative to ¢, then the displacement vector of
the particle P is given by

dP)=X—X=b+%—x, (2.12)

where b=d(0) =B —B is the displacement of the base point O.

The foregoing description illustrates our discussion of reference frames in
the previous section. Indeed, the angles between the i, and i; vectors in the
final configuration may be used to characterize the orientation of the body in
its final state in @. In addition, the auxiliary frames will prove particularly
useful in the proof of Euler’s theorem and in its applications reserved for
advanced study later. However, for our immediate needs, we may ignore their
presence and assume that all vectors are referred to the spatial frame & alone.
We continue with our description of the general displacement of a rigid body.

We note that b is independent of x; hence, d(P)=Db for all points P if and
only if X =x. In this case, the displacement, by definition, is a parallel trans-
lation. On the other hand, if b= 0 for every configuration of the body, the dis-
placement (2.12) is due to a rotation about a fixed point O, and d(P) =% —x.
Therefore, we may draw the following conclusion from (2.12):

(i) The most general displacement of the points of a rigid body consists of
a parallel translation of the base point, hence the body, together with a rotation
about the base point.

It is a remarkable fact that when a rigid body is rotated about a fixed
point, all particles on some line through that point return to their original
positions upon completion of the displacement. Therefore, the same dis-
placement may be produced by a rotation about a line. We may thus con-
clude the following:

(ii) A rotation about a point is equivalent to a rotation about a line
through that point.

This important result is due to Euler (1775). It shows that the equivalent
rotation about a line through O is given by (2.8); hence, we now have
X —x=Tx in (2.12). Collecting our thoughts in (i) and (ii) into (2.12), we
have the following:

(iii) The most general displacement of a rigid body is equivalent to a
parallel translation accompanied by a rotation about a line:

d(P)=X—-X=b+Tx. (2.13)

Herein, b is the displacement of the base point O, Tx is the rotational dis-
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placement for which the rotator T is defined in (2.9), and x is the initial position
vector of P from O.

This is Chasles’ corollary (1830). Tt states, in effect, that the six degrees of
freedom of a rigid body consist of three translational degrees of freedom,
represented by b, together with three rotational degrees of freedom, charac-
terized by Tx. The latter may be taken as the two independent direction
cosines of a fixed axis of rotation and the angle of rotation about it, for exam-
ple.

It is easy to visualize the physical content of these major theorems, so the
proof of Euler’s theorem, which is not trivial, may be omitted in a first
reading. However, the interested reader may wish to skip ahead to the follow-
ing chapter where the proof of Euler’s theorem and other results on finite rigid
body rotations are presented. Otherwise, with no significant loss of continuity,
we may now continue toward our main goal to develop equations for the
velocity and acceleration of the points of a rigid body in terms of their trans-
lational and rotational parts.

2.6. Infinitesimal Displacement of a Rigid Body

The vector equation describing the infinitesimal displacement of the par-
ticles of a rigid body will be derived in this section from the finite dis-
placement relation (2.13). The infinitesimal rotation vector and the instan-
taneous axis of rotation will be defined. The main result is summarized at the
end.

Let a rigid body experience an arbitrary displacement in a time interval
At so that, relative to the spatial frame &, the position vector of any particle
P, which was at the place X(¢) at time ¢, is given by X =X(z+ 4¢) at the
instant ¢+ Az. Then d(P)=X(t+ 4¢) — X(t) = 4X is the displacement of P in
the interval 4¢. Similarly, since B(?) is the place in @ at time ¢ of any assigned
base point O and B=B(r+ 41) is its place at t+ A1, then b=B(s + A1) —
B(t) = 4B describes the displacement of O during 4¢. Of course, the body also
experiences during At a rotation through an angle 46 = 8(t + 4t) — 6(¢) about
an axis whose direction at time ¢ is a(t), where 8(t) is the angular placement
of P at . Thus, recalling (2.9), we see that the rotation about the axis @ during
the time At is described by

Tx =sin 40 a x x + (1 —cos 40)a. x (@ x x), (2.14)

wherein x = x(¢) is the position vector of P from O in frame @ at the instant ¢.
Using these terms in (2.13), we may write

AX = AB + Tx; (2.15)
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that is, with (2.14),
AX =4B +sin 40 a x x + (1 —cos 48)a x (@ x x). (2.16)

The foregoing description of the displacement of the particles of a rigid
body actually is valid for a finite displacement that may occur in a possibly
finite time interval A¢. However, when the angle of rotation is infinitesimal,
the rotational displacement (2.14), hence the total displacement (2.16), may
be simplified by use of the series functions

sinu=u—u/3!+ -+, cosu=1—u?2!+ - (2.17)

First, we put u=A46 and retain in (2.17) only terms of first order in the
infinitesimal angle 46 to approximate

sin 46 = A0, cos 46 = 1.

Then substitution of these into (2.14) yields the infinitesimal rotational dis-
placement

Tx = 40 x x with 40=40a. (2.18)

The vector 40 is called infinitesimal rotation vector. Because the vector
a=a(t) is fixed in @ only momentarily at time ¢, @ is named the instantaneous
axis of rotation. Thus, when the displacement of the base point is infinitesimal
and terms of only the first order in 460 are retained, the total infinitesimal dis-
placement (2.15), or (2.16), may be written in the form

AX = 4B+ 40 x x with 40=40a. (2.19)

In words: Relative to a spatial frame @ = {F;1,}, the total infinitesimal rigid
body displacement AX of a particle P, initially at the place x from an assigned
base point O, is equivalent to an infinitesimal displacement AB of the base point
together with an infinitesimal rotational displacement A8 x x about an instan-
taneous axis through O.

2.7. Composition of Infinitesimal Rotations

Successive finite rotations of a rigid body about concurrent axes cannot
be compounded by addition, for consecutive rotators generally are neither
additive nor commutative. This means that the displacement of a rigid body
due to successive finite rotations generally will depend upon the order in
which the rotations are performed. On the other hand, consecutive
infinitesimal rotations obey the commutative law of vector addition; hence,
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these are independent of the order of their execution. To visualize this fun-
damental difference in the properties of finite and infinitesimal rotations, let us
begin by considering consecutive finite rotations of a rectangular plate with an
edge OP on the x, axis and initially oriented in the vertical plane of a spatial
frame @, as shown in the diagrams of Fig. 2.7. If the plate shown in Fig. 2.7a
is rotated first through a right angle about the x, axis and then through a
right angle about the x, axis, while the same plate shown in Fig. 2.7b suffers
the same rotations but in reverse order, we see at once that the final position
of OP, indeed the orientation of the plate, is not the same. This confirms that
the composition of successive finite rotations of a rigid body about concurrent
axes is not commutative. The composition of finite rigid body rotations and
other related theorems will be studied in the next chapter. Hereafter, we shall
focus on the composition of infinitesimal rotations only.

In the derivation of (2.19), we have naturally and correctly represented
the infinitesimal rotation by a vector symbol 40 = 46 a, without regard for
the noncommutative nature of finite rotations. Nevertheless, these may qualify
as vectors only if the commutative law of vector addition is satisfied.
Therefore, in light of the character of finite rotations, it is of interest to verify
that successive infinitesimal rotations of a rigid body about concurrent axes,
independently of their order of execution, may be added vectorially to form a
single equivalent infinitesimal rotation about another concurrent line.

To establish this result, let d, and d, denote two displacements due to
consecutive infinitesimal rotations through angles 48, and 46, about the
respective concurrent axes @, and a, through a point fixed at O, as shown in
Fig. 2.8a. Then, in view of (2.18), the corresponding infinitesimal dis-
placements given by (2.13) may be written as

d, =40, xx, (2.20a)
d, =40, xx,; =40, xx + 40, x (40, x x), (2.20b)
X3 ® X3

e c‘/®

'r,oFinaI State Final State
|

@ @
¢ [}
Q
X
il (a) ' {b)
Rotation of 90° about x, Rotation of 90° about x3
followed by 90° about x; followed by 90° about x,

Figure 2.7. Consecutive finite rotations are not commutative, so they cannot be compounded by
vector addition.
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(a) (b)
Infinitesimal rotation A8, {nfinitesimal rotation A8,
followed by A8, followed by A,

Figure 2.8. Composition of successive infinitesimal rotations about concurrent axes.

where x, =x +d, is the position vector of a particle P after the first rotation
from its initial place at x. The total displacement is d=d, +d,.

Now, starting from the same initial position x and using identical
rotations but performed with 46, followed by 46,, as shown in Fig. 2.8b, we
see with (2.18) and (2.13) that the corresponding infinitesimal displacement
vectors are given by

d, =40, xx, (2.21a)
d, =40, x %, =40, xX + 40, x (40, x x), (2.21b)

wherein &, = x +d, is the position vector of P after the first rotation, and now
d=4d, +d, defines the total displacement.

Upon discarding terms of order larger than the first in 40, and 46, in
(2.20b) and (2.21b), which is consistent with our earlier approximation in
(2.18), we find

=d,=40,xx and d,=d,=40,xx

Therefore, regardless of the order of the rotations, the total displacement, d =
d, +d,=d,+d, =d, is the same; and, with the aid of the foregoing relations, it
may be written as

d= (40, + 40,) x x = (40, + 40,) x x.

Consequently, there exists independently of the order of the rotations an
equivalent infinitesimal rotation

A40= 40, + 40, = 40, + 40, (2.22)

about another axis at O so that the total displacement d = 40 x x is the same.
We recognize that (2.22) shows that consecutive infinitesimal rotations
about concurrent lines are indeed compounded by vector addition. The
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familiar decomposition of 40 into its vector components in a frame @ =
{F;e,} is an important application of this result; for,

A0 =A40,e,+ 40,e,+ 40;e, (2.23)

is the sum of three infinitesimal and conceivably simultaneous rotations about
the concurrent coordinate lines. We recall that this property does not hold for
finite rigid body rotations whose composition is neither additive nor com-
mutative. But we shall reserve discussion of this advanced topic for later and
continue toward our primary objective to learn how the velocity and
acceleration of the particles of a rigid body are related to the translational and
rotational parts of its motion.

2.8. Velocity and Acceleration of Points of a Rigid Body

We are now prepared to focus on our principal objective to derive from
the exact finite displacement vector equation (2.16) special representations for
the velocity and acceleration that exhibit the instantaneous translational and
rotational parts of the motion in space of the points of a rigid body. The
angular velocity and angular acceleration of the body about an instantaneous
axis at the base point will enter the results in a natural way; and the
relationship of these vectors to certain velocity and acceleration terms having
simple geometrical interpretations will be described. The main formulas will
show that the usual differentiation operations defined in (1.8) and (1.9) for the
velocity and acceleration of any material point whatever, in their application
to a rigid body may be replaced almost entirely by simple vector algebraic
operations that often are easy to visualize. We begin with the derivation of the
velocity equation.

2.8.1. Velocity of a Particle of a Rigid Body

The velocity of a point of a rigid body in motion relative to an assigned
frame @ ={F;e,} can be easily derived from either the exact finite dis-
placement vector equation (2.16) or the infinitesimal displacement relation
(2.19). We shall use (2.16), leaving the easier application of the latter as an
exercise for the reader. We start by rewriting (2.16) in the familiar form of a
difference quotient that will allow us to apply the definition of the derivative
of a vector function of the scalar variable ¢:

AX—AB+A9<1>< sin 460 +A9 X (axx) 1 —cos 40 224)
At At 4 M\ e )T e exx ) ¢
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Next, we form the limit of (2.24) as 4X, 4B, and 48 approach zero with 4z.
Then recalling that

sin 40 1—cos 40
= im —— "=
m]r—r»lo 40 I and Al:"—ljo 40 ’
writing
dX dB
=—= lim — =—= lim —, 225
Ve dt Al/u—-no at’ Yo dt Arlr-l.lo At ( )
and introducing
460 do .
= lim —a=—a=0a, 2.26
o= lim o= o=te (2:26)

we obtain in frame &= {F;e,} the following important equation for the
velocity v, =v(P, t) of a point P of the rigid body:

Vp=Vo+®XX, (2.27)

wherein v, =v(0, 1) is the velocity of the base point O and x is the position
vector of P from O. The velocity v, in (2.27) sometimes is called the total or
absolute velocity of P in frame &.

The new vector @ defined by (2.26) is named the angular velocity of the
body about point O relative to frame ®. Notice that the angular velocity vec-
tor is parallel to the instantaneous axis of rotation defined by a(z) at the base
point O; therefore, @ has the same right-hand sense assigned earlier to a. The
magnitude w = || of the angular velocity vector is known as the angular
speed. We see that this coincides with our earlier elementary description of the
angular speed as the time rate of change of the increasing angular placement:
o = 0. Moreover, it is seen from (2.23) that the lim ,, , o(40/41) yields

O=we=0w,e +w,e,+ w;e, (2.28)

for the angular velocity vector in a frame & = {F;e,}. Thus, the three scalar
components w, =d0,/dt of @ are identified as the instantaneous rates of
rotation of the body about the three coordinate directions e, in ®. Clearly, the
angular velocity has the physical dimensions [w] = [7!]. When the angular
measure is expressed in radians and time is in seconds, the units of @ are
rad/sec (radians per second). Unless otherwise stated, use of these units is
preferred. On the other hand, in engineering practice the common measure of
angular motion often is reported in revolutions and time is in minutes, so in
this case the units of @ are written as rpm (revolutions per minute). The con-
version from one set of units to the other is accomplished by recalling that
one revolution is equivalent to 2z rad; thus, 1 rpm = 27/60 rad/sec.
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The vectors introduced in (2.27) are shown in the schematic Fig.2.9.
Additional physical relevance may be assigned to the separate terms in (2.27)
by examination of the time derivative in @ of the position vector X =B + x of
the point P. With the aid of (2.25), this yields v, = v, + X; then it follows from
(2.27) that

X=Vp— V=0 XX. (2.29)

Because x describes the velocity of the point P relative to the base point O,
the quantity o x x is named the relative rigid body velocity; it is the velocity
that the point P would have if the base point were fixed in @. If, in fact, the
base point is fixed in @, then v, =0; and we have v, = ® x x for the velocity of
P. Therefore, the term o x x is the contribution to the total velocity of P due
to a rotation of P about the base point O.

It is also seen in (2.27) that @ =0 is a necessary and sufficient condition
for which v, =v, holds for all x. This describes a translation in which v, is
the instantaneous translational velocity of all points of the body. In this case,
the displacement of every particle of the body from an initial configuration to
its current configuration is at each instant equivalent to a parallel translation;
but the body, as illustrated in Problem 2.1, need not move on a straight line
path at each moment.

With these physical descriptions in mind, the result (2.27) may be sum-
marized in more graphic terms: The velocity of any point P of a rigid body is
equal to the velocity of a base point O plus the relative rigid body velocity, the
velocity of P due to its rotation about the base point O:

Vp=Vo+®XX [cf. (2.27)].

Figure 2.9. Schematic of the vectors associated with the equation vp,=vy,+ @ x x.
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2.8.2. Acceleration of a Particle of a Rigid Body

The acceleration a, = a(P, t) =V, relative to @ of any point P of a rigid
body is obtained by differentiation of (2.27) and use of (2.29). This yields the
following important equation for the acceleration of P:

A,=a,+OX(OXX)+®XX, (2.30)

Herein a,=2a(0, t) =¥, is the acceleration in @ of the base point O and & =
dw/dt, the time rate of change in @ of the angular velocity of the body, is titled
the angular acceleration of the body about O relative to frame &@. The
acceleration a, in (2.30) sometimes is called the total or absolute acceleration
of P in frame &.

It is important to recognize that @ and & generally are not parallel vec-
tors. Indeed, differentiation of (2.26) shows that the angular acceleration vec-
tor is determined by

o(t)=08(1) a(t) + 0(z) a(1). (2.31)

However, a(r) being a unit vector, it follows that a-@ =0 must hold for all
times in the spatial frame @ = {F; e, }; hence, @ always is perpendicular to a.
Consequently, @(¢) is situated in the plane of @ and @ and cannot be parallel
to @(t) = 0(¢) a(¢) unless @ = 0. But this happens if and only if a is a constant
vector in @; and in this case, we have the simple relations

o(t)=0e and @(1)=0(1) (2.32)

In addition, it is also clear that the magnitude of the angular acceleration vec-
tor is related to the simple angular acceleration introduced in Chapter 1,
namely, |®| = |8, but only for this simple case.

The angular acceleration has the physical dimensions [®]=[7"2%]. In
particular, when the angular speed is expressed in rad/sec, the measure units
of the angular acceleration are rad/sec’ (radians per second, per second). Use
of these units is preferred unless explicitly remarked otherwise. In engineering
usage, however, the units of angular acceleration often are given as rpm?
(revolutions per minute, per minute). In any case, the conversion of all units is
straightforward.

It is useful to note that the cross-product terms in (2.29) and (2.30) have
simple geometrical descriptions. The relative rigid body velocity vector @ x x,
which at each instant is perpendicular to the plane of @ and x, instan-
taneously is tangent to a circle in a plane perpendicular to the axis of rotation.
Therefore, the vector @ x (® x x) lies in the plane of @ and x and is directed
toward the instantaneous axis of rotation. This vector is known as the cen-
tripetal acceleration. Similarly, the vector @ x x, perpendicular to the plane of
® and x at each moment, is instantaneously tangent to another circle in a
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Figure 2.10. Geometrical description of the cen-
tripetal and tangential acceleration terms shown
for the special case of rotation about a fixed axis.

plane normal to ®; hence, this vector is named the tangential acceleration. It is
easy to picture these terms in the special case when @ and @ are parallel, as
shown in Fig. 2.10.

Finally, differentiation of (2.29) and use of (2.30) shows that the
acceleration of the point P of the rigid body relative to the base point O is
given by

X=a,—2a,=0X(@XX)+OXX. (2.33)

Hence, this collection of acceleration terms is called the relative rigid body
acceleration; it is the acceleration that the particle P would have if the base
point were fixed in @. Therefore, (2.33) is the contribution to the total
acceleration of P due to a rotation about the base point O. Moreover, ® =0 is
a necessary and sufficient condition for which a,=a, holds for all x, so a,
represents the instantaneous translational acceleration of all points of the
body.

Our main result (2.30) may now be summarized in terms of the foregoing
physical descriptions: The acceleration of any point P of a rigid body is equal
to the acceleration of a base point O plus the relative rigid body acceleration,
the acceleration of P due to its rotation about the base point O; the latter is the
sum of the centripetal acceleration and the tangential acceleration:

a,=2,+OX(@XX)+dXX [cf. (2.30)].

2.9. Some Applications of the Basic Equations

The fundamental rules (2.27) and (2.30) are the principal equations we
set out to derive for the velocity and acceleration of the points of a rigid body.
We have seen that these relations separate and exhibit the translational and
rotational parts of the body’s motion. In this format, they have wide utility in
applications and in further development of other important theoretical results
that will be presented later. Presently, however, we shall consider three
introductory examples that will illustrate applications of the basic equations.
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The first example demonstrates the vector calculations frequently encountered
in plane motion applications, and our earlier geometrical interpretation of the
various vector product terms is described. The second problem shows how the
vector equations may be used in conjunction with previous work to find
various unknown, instantaneous quantities in a system that involves the
motion of several connected rigid bodies. Our third illustration is an
application of (2.27) and (2.30) to an easy mechanical design problem. Some
additional examples on the important topic of rolling without slip are reserved
for the next section, and analysis of a spatial mechanism will be studied
afterwards. We shall conclude with an example concerning the velocity of a
rigid body particle referred to an imbedded frame.

Example 2.2. The center O of a circular blade of radius a moves with a
constant speed v along the line Y = 2a in the machine frame @ = {F;i,}. Dur-
ing its return stroke, the blade has an angular velocity @ and an angular
acceleration @, as shown in Fig. 2.11. Find in & the absolute velocity and the
total acceleration of a point P on the edge of the blade.

Solution. The total velocity and the absolute acceleration of P in @ are

determined by use of (2.27) and (2.30), respectively. We begin construction of
the solution by observing that the base point O has the constant velocity

Vo =1i, therefore, a,=0. (2.34)

The vector of P from O in Fig. 2.11 is given by x =a(cos §i+sin 6 j) in &;
hence, with @ = wk and & = @k, we find

o X x = aw(cos 8 j—sin 0 1), ®xx=ad(cos 0j—sin i), (2.35)
and

o % (0 xx)= —aw?*(cos §i+sin 8 j). (2.36)

wax)

Figure 2.11. Motion of a circular blade dur-
ing its return stroke.
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Collecting the results (2.34)-(2.36) in (2.27) and (2.30), we obtain in frame &
the absolute velocity

Vp=(v—awsin 0)i + aw cos 4 j, 2.37)
and the total acceleration

a,=(—aw’ cos 0 — ad sin B)i + (ad cos & — aw? sin 0)j. (2.38)

It is useful to notice in these calculations that because @ is parallel to ®, the
product @ xx may be obtained immediately from the product ®xx by
replacement of o with @, as illustrated in (2.35).

The geometrical character of the relative rigid body velocity and
acceleration terms described earlier may be visualized in this example by our
introducing at P an intrinsic frame y = {P; e,, e,, €, }, as shown in Fig. 2.11. Tt
is seen that the vector products ® x x = awe, and @ x x = awe, are parallel vec-
tors tangent to the blade at P; and @ x (@ xXx)= —aw?e, is normal to the
blade and directed toward its center O. Use of these expressions and (2.34) in
(2.27) and (2.30) yields a simpler representation of the solution:

vp=ti+awe,  ap,=ade,+aw’,, (2.39)
wherein the tangent and normal vectors are defined by

e,= —sin i+ cos b j, e,= —x/a= —(cos 8i+sin0j) (2.40)

in frame @. Indeed, when these unit vectors are used in (2.39), we recover the
results (2.37) and (2.38). The geometrical constructions illustrated above often
are valuable aids in the calculation of the cross product terms in (2.27) and
(2.30).

Finally, let us recall from Chapter 1 that the velocity of the particle P on
the edge of the blade may be obtained in the usual way by differentiation of
its position vector in &, namely,

X(P, t)=Xi+ 2aj+ a(cos 0i+sin 0 j), (2.41)

wherein X is the horizontal distance of O from F. Thus, with Xi=v,, =i and
o = 6, we obtain the velocity of P in &:

vp=X =vi+ aw(—sin 8+ cos 0j) (2.42)
Then, clearly, the acceleration of P in @ is given by
ap=V,=ad(—sin i+ cos 0 j)— aw?(cos 8 i+sin ). (2.43)

Of course, these results are seen to be the same as (2.37) and (2.38) computed
algebraically above. In more complex problems in which the geometry is more
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difficult to perceive, the direct calculations based on the vector algebraic for-
mulas (2.27) and (2.30) will prove especially valuable. (]

The relations (2.27) and (2.30) can be applied in circumstances where it
may be extremely tedious to produce a solution were one to rely on only the
use of the usual differentiation procedure sketched above in (2.41)-(2.43).
Situations may arise where only the values of some vector quantities at a par-
ticular instant of interest, rather than their functional dependence for all
times, are assigned; and, in such cases, it may be possible to obtain additional
data desired only for that special moment of concern. This situation is
illustrated in the next example involving the motion of several connected rigid
bodies.

Example 2.3. A slider block A4 of an engine mechanism moves in a plane,
circular slot of radius 2 ft. At the instant when the links 4B and BC are in the
perpendicular position shown in Fig. 2.12, the block has a speed of 10 ft/sec in
the direction indicated, and a rate of change of speed of 20 ft/sec’. Find in
frame ¢ = {F;i,} the absolute velocity and acceleration of the hinge pin B,
and determine the angular velocities and angular accelerations of the links AB
and BC at the instant of interest.

Solution. The point B belongs to both the link AB and the link BC, so
the velocity of B as determined by (2.27) may be written as

V=V, + 0, XX, =Vs+ 0, XX,, (2.44)

wherein o, =,k and ©,= —m,k denote the angular velocities of the links
shown in Fig. 2.12. We observe also that x, =5jft and x,= —2sin45°i=
—\/—?:i ft are the position vectors of B from the points 4 and C whose velocity
vectors are

v, =§t=10(cos 45° i + sin 45° j)

=5./2(i+j)ft/sec and vo=0. (2.45)

Figure 2.12. Instantaneous motion of several connected
rigid parts of an engine mechanism.
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We see immediately from the geometry that
0, xx,; = —Sw,iftsec and o, xx,=w, ﬁj ft/sec. (2.46)
Substitution of (2.45) and (2.46) into (2.44) yields
Va=5(2 — )i+ 5./2j ft/sec = w, /2 fi/sec. (2.47)
Therefore, the corresponding scalar components must satisfy

5(/2—0,)=0 and 5./2=0,./2, (2.48)

which yield w,= ﬁ rad/sec and ,=Srad/sec. Finally, with the aid of
(2.47), we obtain at the instant of interest

vp=S5 \/Ej ft/sec, 0, = \/ik rad/sec, o, = —Skrad/sec, (2.49)

for the absolute velocity of B and the angular velocities of the links AB
and BC.

The acceleration of B as determined by (2.30) may be similary written in
two ways:

ag=a,+ o, xX(0,xXx;)+0, XX,

=a,+ 0, X (0; XX;)+®,; XX,, (2.50)

in which @, =@,k and &, = —w,k denote the angular accelerations of the
links. The acceleration of the point 4 is found from a , = §t + §*/Rn, where § =
20 ft/sec?, R=21t, and n=cos 45° i —sin 45° j=./2/2(i—j). We now have

a,=35./2i—152jft/sec> and a.=0. (2.51)

Again, with the aid of (2.46), it is easily seen geometrically that
0, % (0, xx,)= =5wij= —10j ft/sec?, O, xx;=—50,1, (2.52)
®, X (0, X X,) = w? ﬁi=25 2i ft/sec?, @, X Xy =y \/_2-j, (2.53)

wherein we recall (2.49). Gathering the relations (2.51)—(2.53) in (2.50), we
obtain

a,=5(7/2—@)i—503/2+2)j=25/2i+d,./2i (2.54)
Therefore, the corresponding scalar components provide the relations
5(7/2—d,)=252 and —5(3./2+2)=d,./2, (2.55)

which yield the values ), =2 /2 rad/sec? and &, = —5(3 + \/5) rad/sec®. The
negative sign in the last term indicates that the direction of the vector @, is
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opposite to the direction assumed previously. The algebra typically determines
both the magnitude and direction of an unknown vector quantity, as shown
here for the vector @,. Use of either of the angular acceleration values in
(2.54) completes the solution. At the moment of interest, the angular
accelerations of the links 4B and BC are

®, =2 \/Ek rad/sec’,  @,=503+ ﬁ)k rad/sec?; (2.56)

and
az=25./2i—-5(@3 \/5+2)j ft/sec? (2.57)
is the absolute acceleration of the pin B. O

Industrial design problems usually involve integration of several design
concepts, technical analyses, and a variety of manufacturing procedures
assembled to create some product or system; and it is customary that several
parts of a product or a manufacturing system must be analyzed and designed
at the same time to accommodate certain specified criteria. The simple
mechanical design problem illustrated in the next example integrates an easy
cam design analysis with the design of a link mechanism so that both parts
satisfy specified design conditions for a particular set of system parameters.

Example 2.4. The shuttle mechanism of a certain sewing machine
described in Fig. 2.13 is driven by a cam that rotates with a constant angular
velocity o = wk, while a linkage arrangement moves the shuttle, slider block
B, in a fixed vertical slot in the machine. The cam must be designed for the
geometry shown in Fig. 2.13 so that the shuttle drive block 4 has a sinusoidal
velocity v, = 6 sin 8 cm/sec, and the length / of the link 4B must be chosen
so that the link has no angular acceleration at the instant ¢, when the device is
in the configuration where ¢ =30° when 6 =60°. Find the shape of the cam
and the angular speed at which it must operate, and determine the link length

Figure 2.13. A cam-driven linkage mechanism design.
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! needed for the design specifications. Determine the velocity and the
acceleration of B at the instant ¢,. Assume that 6 =0 initially.

Solution. We know from previous experience that the cam shape may be
found by integration of the differential equation for the velocity of the contact
point P on the push rod. Since the rigid rod PA suffers no rotation, the rule
(2.27) reveals the intuitive relation v,=v, used in Chapter 1. Thus, by aid of
the same procedure used in (1.56) and with v, =6sin 0 i, we obtain

j dr :% j: sin 0 df (2.58)

in which r(0)=a=1/2cm is obtained from the given cam geometry, and
@ =0 is the unknown constant angular speed of the cam. Integration of this
equation yields

r(9)=%+%(1—cos #) cm. (2.59)

Since r(n)=d=1.5 cm, (2.59) determines the constant angular speed and the
shape of the cam needed to produce the designated design velocity of 4; we
obtain

o =60=12rad/sec, (2.60a)

r(0)=1—0.5cos # cm. (2.60b)

This completes the cam design analysis.

The motion of the link 4B involves four unknown quantities: the velocity
v of the slider B; the angular velocity @, and the angular acceleration @, of
the link 4B; and the vector I of point B from A. These vectors may be related
by (2.27) and (2.30) expressed in the form

Vp=V,+ o Xl ag=a,+to,x(o,xl)+o,xL (2.61)

The velocity of the base point A4 is given as v, = 6 sin f i cm/sec; hence,
using the result (2.60a) derived in the cam analysis, we find the acceleration
a, =72 cos 0icm/sec’. In particular, at the instant of interest z, when 6 = 60°,
we have

v,=3 \/Ei cmy/sec, a_, = 36i cm/sec. (2.62)

At the same time, we have also ¢ =30"; hence, the vector of B from 4 in
frame @ = {F,i,} is given by 1:1/2(\/§i+j) cm. Then, writing o, = ok, we
may compute the products

0, x 1= (0,12)(/3j-1), (2.63)
o, x (0, xI) = (—o?l2)(/3i +]j). (2.64)
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Finally, recalling that the design constraint at the instant #, demands that
®,; =0, observing that vz =v,j, a5=agj, and substituting (2.62), (2.63), and
(2.64) into (2.61), we derive the relations

va=vgj= (33—, [2)i + w,1/3/2j cm/sec,
a5 =agj= (36— w?l/3/2)i — w?l2j cm/sec’.
The corresponding scalar components in these identities reveal the results
w,l=6./3 and vB=a),l\/3_/2j = 9j cm/sec; (2.65)
wil=24./3 and az= —wil2j= —12 \/Sj cm/sec’. (2.66)

These equations provide the velocity and acceleration of B required at ¢,; and
we also may conclude from these equations that

w,=4radfsec, [=3./3/2cm, (2.67)

which is the link length needed for the design specifications. This completes
the design analysis for the given set of system parameters. A more general
analysis is left as an exercise for the student in Problem 2.33.

29.1. Rolling without Slip

An important special application of (2.27) and (2.30) to mechanical
design analysis concerns the motion transmitted by bodies through rolling
contact. Rotary motion which is transferred between two shafts by disks or
gears that roll on one another without slipping is a typical example.
Sometimes, however, relative sliding between contacting surfaces in a direc-
tion tangent to a contacting line is permissible provided no slipping normal to
the line of contact can occur in the direction of the rotational motion. This is
a characteristic of helical gear design in which the gear teeth prevent slipping
normal to the sliding helicoidal contact surfaces and thus provide the means
of transmitting power between the shafts.

The idea of rolling without slip is introduced in the first example below.
Afterwards, the criterion for rolling without slip is formulated in general
terms, and the equations are illustrated in the study of two further examples
of rolling wheels and bevel gears. A final application to helical gear motion
provides an example for which the no-slip criterion is invalid.

Example 2.5. A wheel of radius a rolls without slipping on a fixed
horizontal surface so that its center moves uniformly with velocity v,, as
shown in Fig. 2.14. (a) Find the angular velocity ® of the wheel. (b) Let C
denote the point on the wheel which instantaneously is in contact with the
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Figure 2.14. Rolling without slip on a
Fixed Surface fixed, horizontal surface.

fixed surface. Show that its velocity v is zero. (c¢) Determine the acceleration
of a point P on the rim of the wheel. (d) Find the acceleration of the contact
point C. (¢) Determine the path of P in frame & = {G;i,}.

Solution. (a) The angular velocity of the wheel is related to the condition
that the wheel roll without slipping on the fixed surface. This rolling con-
straint may be characterized in a couple of ways. One definition is that the
curves on the surfaces in rolling contact be tangent to each other at each
point of contact, and the lengths of the arcs traced on the two curves between
successive points of contact be equal. Thus, if a wheel of radius @ advances a
horizontal distance ds as it turns through an angle d8 about the direction k at
0, the no-slip rolling condition is expressed by

ds=a do. (2.68)

Then with v, =|v,| =ds/dt and w=|®| =db/di, we find from (2.68) that
v, = aw. Therefore, the angular velocity of the wheel about O is given by

o =wk = (v,/a)k. (2.69)

{b) The velocity of the point of contact C at r=gj from O is determined
by ve=v, + @ xr. Thus, with v, =1,i and use of (2.69), we find

Ve=voi+ (vp/ak) X aj=rvoi—v,i=0. (2.70)

This confirms that the velocity of the rim point C instantaneously in contact
with the fixed surface is zero.

(c) The acceleration of an arbitrary point P on the rim of the wheel at x
from O is determiined by (2.30). Since v, is constant a, = 0. Also, (2.69) shows
that o is constant; hence, & =10. Noting that x = a(cos 6 j —sin € i) and obser-
ving that @ x (® x x) is directed along —x and has the magnitude aw? we
now recall (2.30) and compute easily

a,= —aw’x/a= —(v}/a)(cos 0 j—sin §1i). (2.71)

(d) The point P is in contact with the surface when 6 =0 or 27; and in
this case, (2.71) yields

ac= —(v3/a)j (2.72)
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for the instantaneous acceleration of the contact point C. We thus learn that
although the instantaneous velocity of P at C is zero, its acceleration is not.
Indeed, (2.72) shows that a.=0 if and only if the wheel is at rest in &. It
should be observed that the acceleration is directed from C toward O.

(e) The equation of the path traced by P in the frame & = {G;i,} is
determined by integration of (2.27) in which

vp=dX(P, t)/dt, Vo=awi, and @ xx= —aw(cos fi+sinfj)
are used to express the right-hand side of (2.27) in terms of 6 and w; namely,
dX(P, t)/dt = aw(1 —cos )i —aw sin 6 ). (2.73)
Assigning X =0 at 6 =0 and writing w = df/dt, we determine the motion
X(P, t)=Xi— Yj=a(0 —sin 0)i + a(cos 8 — 1)j (2.74)
whose locus, shown in Fig. 2.15, is a cycloid with parametric equations
X =a(f—sin 9), Y=a(1—cos8). (2.75)

The reader may find it helpful to demonstrate that the motion (2.74) or (2.75)
also may be obtained by geometrical construction based on Fig. 2.15. |

2.9.1.1. Driving Contact and Rolling without Slip

Two moving rigid bodies that come into contact obviously cannot
penetrate one another. In fact, they can maintain their contact with each other
only so long as they have the same component of velocity in the direction
normal to their surfaces at their instantaneous points of contact; otherwise,
the bodies would separate. If their mutual normal velocity component is not

an am

Figure 2.15. The locus generated by the motion of a point P on the circumference of a circle that
rolls without slipping along a straight line is a cycloid.
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zero, then one body pushes to drive the other in their common normal direc-
tion. This driving contact, however, may involve slipping in the tangential
plane between the two surfaces, so that the tangential velocity components of
their instantaneous contact points will not be equal. In this case, the bodies
slide on one another. Thus, in general, two bodies roll on one another without
slipping when and only when their instantaneous points of contact have the
same velocity vector so that both their corresponding normal and tangential
velocity components are equal. In particular, when their mutual normal
velocity component vanishes, the rolling contact is called pure rolling without
slip, or more simply, rolling without slip. Otherwise, the contact is identified
as driving contact, with or without slip. Indeed, the previous example of pure
rolling without slip, introduced somewhat differently, showed that the velocity
of the rim point instantaneously in contact with the fixed surface is zero. Some
additional applications of pure rolling without slip will be studied below. An
example of driving contact with partial slip in a specified direction will follow;
and other examples may be found in the Problems. (See Problem 2.51, for
example.)

Before we turn to the next example, however, let us ask, What
acceleration condition must be satisfied at points of instantaneous contact for
roiling without slipping? Since the curvatures of the two surfaces of rolling
contact generally are different, it is clear that the intrinsic acceleration of their
points of instantaneous contact cannot be the same. Indeed, we have seen in
the foregoing example that the point on the wheel in contact instantaneously
with the fixed, horizontal surface has the acceleration (2.72); but the
corresponding point on the fixed surface has, of course, no acceleration at all.
On the other hand, because the arc lengths traced out by successive points of
rolling contact on any two surfaces must be the same in time, in addition to
the speed in the direction of their common tangent, the rate of change of
speed of the coincident contact points also must be the same. This leads to the
following criterion.

Criterion for Rolling without Slip. The points P and Q of instantaneous
contact between any two bodies rolling without slipping on one another must
have the same velocity and the same tangential component of acceleration:

Vp=VYg, ap-t=ag-t, (2.76)

in which t is the intrinsic vector tangent to the contacting curves at their coin-
cident contact points P and Q.

In particular, for a fixed surface, both the speed § and the tangential
acceleration component § are zero, so the contact point on the fixed surface
naturally has no acceleration at all, while the point of contact on the wheel
has only a normal component of acceleration, as we have seen before. Since
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the velocity of the contact point must be zero, we may use the no-slip
criterion to determine the angular speed of the wheel in our previous example.
Recalling Fig. 2.14, we write

Ve=Vo+OXTr=vyi—awi=0,

from which w =v,/a follows, as before. We shall apply the general conditions
(2.76) in the next example.

Example 2.6. A rubber drive wheel of radius r, rolls without slipping on
the inside surface of a turntable of radius r,. The turntable has an angular
speed @, which is increasing at the rate @, about a fixed axis at F, as shown
in Fig. 2.16. Find the corresponding angular rates of the drive wheel about its
fixed bearing at O.

Solution. The velocities and accelerations of the instantaneous contact
points D on the rim of the drive wheel and C on the inside surface of the
turntable are determined by

Ve=Vp+ @, Xry, ac=ap+0, xX(0, Xr)+ao,xr;, @77
¥p=V¥o+@; XTIy, Ap=12,+ 0, X (W;XIy)+ G, XTIy,
wherein we have
r,=FC= —rn, @, =w,b, @, =a@b,
— (2.78)
r2:0D= “rzn, £!)2=a)2b, 0)2=w2b,

referred to the intrinsic frame y = {C;t,n, b} shown in Fig. 2.16. Since O and

o SR

Figure 2.16. A turntable driven without
slipping by a rubber wheel.
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F are fixed points, vp,=v.=a,=a,=0; and it is casy to see that the remain-
ing terms are given by

o, Xr; = —o,;bxrn=r,w,t, O, X1, =r ot
W, XTI, = —w,bXryn=r,w,t, @, XTIy =r,0,t; (2.79)
o, x (o, xr)=r o, W, % (0, XT,)=r,w3n.

Substitution of these data into (2.77) yields relations for the velocities and
accelerations of the points C and D at the moment of contact:

v(vzr,c)lt, aC:rld)lt-‘l—rlw%n’
(2.80)

v, =r,m,t, A, =r,d,t+r,w3n.

The criterion (2.76) for rolling without slip may now be applied to these
results; we get

Vo=V, yields r,w,=r,w,,
) (2.81)
ac-t=a;-t yields r,0,=r,,.

And it follows that the angular rates of rotation of the drive wheel are given
by

w,=r,w,/t, and @,=r,0,/r,. (2.82)

Notice that the first of (2.81} states that the instantaneous speed s of the
points of contact are the same, and the second of (2.81) means that their
instantaneous rates of change of speed § are the same. Of course, as shown by
(2.80), the accelerations of the contact points C and D are not equal. O

Example 2.7. Bevel gears are used to transmit rotary motion between
intersecting axles; and their meshed gear teeth assure that this motion will be
transmitted without slip. A typical bevel gear arrangement is shown in
Fig. 2.17. The bevel angles 6 and ¢ are called pitch angles; their sum is the

{a}: Problem Geometry

Figure 2.17. Application to bevel gear design.
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angle between the gear shafts. If the drive gear with a pitch angle 6 has an
angular speed w,, determine the angular speed w, of the driven, follower gear
with a pitch angle ¢. Assume that the shafts are fixed in the machine.

Solution. Because the gears turn about fixed axles and roll on one
another without slipping, each pair of points of contact of the gears along
their instantaneous contact line 4B must have the same velocity. Let r, and 7,
be the radii of the mutual rolling contact point 4 from points on the fixed
axles, as shown in Fig. 2.17. Then, in obvious notation,

V=@ ,XFt; =0 XTI ields wyry=w,r,. (2.83
(XTg=0,XT, Y ala= @y,

Introducing into (2.83) the pitch angle geometry from Fig. 2.17, we obtain the
angular speed of the follower gear:

w,= w,sin §/sin ¢. (2.84)

We see from this result that the angular speeds are independent of the gear
sizes, so the same rule holds for both large gears and small gears. Also, (2.84)
shows that w,> w, for 8 = ¢, with w,= w, when and only when 0 = ¢. In par-
ticular, when the shafts intersect in a right angle, 8 + ¢ =n/2 and (2.84)
becomes

w,=w,tan 0, 0<f<m/2. (2.85)

In this case, the angular speed of the follower gear is larger or smaller than
the angular speed of the drive gear according as the pitch angle of the drive
gear is greater or less than 45°, O

Example 2.8. Helical gears may be used to transmit rotary motion
between nonintersecting and nonparallel axles. Their helicoidal shaped teeth
allow relative sliding of the gear teeth along their common contact line, but
the teeth prevent slipping normal to that line. The sliding motion provides a
smooth, quiet operation with less shock than is common with other gears
having straight teeth. A typical crossed helical gear arrangement is shown in
Fig. 2.18. The angles , and i/, are the constant helix angles of the driver and
follower gear teeth, respectively; and their sum is the angle between the gear
shafts. Determine the angular speed w, of the follower gear when the drive
gear has an angular speed w,, and the shafts are fixed in the machine.

Solution. Let r, and r, denote the radii of a mutual contact point 4 from
points on the fixed axles, as shown in Fig. 2.18. Then we may write

Vg =@y XTy=44%rk=w,ri,
. . (2.86)
Vy=0,Xt=—wj x(—rk)=w,ri,
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Right-handed crossed
helical gears

Tangent line of
sliding contact

in a plane parallel
to both shafts

Normal to the line of
n  sliding contact in the
plane of v, and Vag

Top view of crossed hefical gears

Figure 2.18. Crossed helical gears and their velocity components.

for the respective velocities of the contact point 4 on the driver and on the
follower. The tangent line of the helical teeth at 4, denoted by t, forms the
helix angles v, and , with the gear axles. Each gear has a sliding component
of velocity in the tangential direction t, so the criterion for rolling without slip
cannot be applied to the velocities (2.86). Rather, only the components of
these vectors perpendicular to the teeth are equal:

Vi M=V oM, (2.87)

wherein n is the normal vector to t as shown in Fig. 2.18. It is seen that the
velocity vectors (2.86) make the same angles with n that the shafts make with
t; these are the helix angles. Hence, their components in the direction of the
normal n satisfy (2.87) when

Wyr 4 COS Y 4= F,COS Y p. (2.88)
Therefore, the angular speed of the follower gear is

racos iy,

Since (2.89) depends on both the helix angles and the gear radii, a variety
of angular speed relations is possible. For gears of equal radii, for example,
the angular speed of the follower will be greater than that of the driver
provided that the helix angle of the follower is the larger. In the special case
when the shafts are perpendicular, ¥+ ,=7/2 and cos y ,/cos Y, = cot ¥,
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then, for gears of equal radii, the angular speed of the follower is larger than
that of the driver provided that the helix angle of the drive gear is smaller
than 45°. Of course, the helix angle of crossed gears may be equal, in which
case (2.89) yields the angular speed ratio w,/w,=r,/r;, which is independent
of the angle between the gear shafts. Alternatively, recalling the pitch triangle
in Fig. 1.15, we see that tan y,=tan y, if and only if p,/(2nr,)= p,/(2nr,).
Therefore, the angular speed ratio of crossed helical gears having equal helix
angles also is equal to the reciprocal ratio of the pitches p, and p, of the
helices: @ /w,= p,/p,. Evidently, the pitch triangle may be used to cast (2.89)
in terms of ratios of the pitches and the radii of the gears; but we shall omit
this relation.

Use of (2.88) in (2.86) provides the velocities of the contact point 4 on
the driver and on the follower:

V4a= gl €os Y (n+tan y, t),

(2.90)
V4 =@y, CO8 Y (R —tan y t).

Therefore, the velocities may be equal if and only if yy, = —i,. This is possible
only when the angle between the shafts is zero, that is, when and only when
the shafts are parallel. The negative sign means that the helices of parallel
helical gears must have opposite hand so that they slope in opposite direc-
tions away from the viewer. Crossed helical gears, contrariwise, usually have
the same hand so that the helices slope in the same direction away from the
viewer, as assumed in Fig. 2.18, which shows right-handed helical gears.

2.9.2. Analysis of a Spatial Mechanism

The problems studied so far have involved only plane motions for which
the angular velocity and the angular acceleration are parallel vectors, and for
which use of the geometrical interpretations of the vector products often is
especially helpful in their calculation. The analysis of spatial motions, because
of the increased complexity and the difficulty of visualizing the geometrical
aspects of a problem, inherently is more difficult; but the use of vector
methods in these applications often simplifies their analysis and eliminates our
need to perceive all of the geometrical details. The application of vector
methods to the solution of spatial problems demonstrates strikingly the power
and utility of this invaluable analytical tool. This is illustrated clearly in the
following example of a simple spatial mechanism. Numerous additional exam-
ples will be encountered in Chapter 4.

Example 2.9. Two slider blocks 4 and B are connected by ball joints to
a rigid rod, as shown in Fig. 2.19. The motion of 4 in & = {F; i, } is controlled
so that its translational velocity is constant during an interval of interest. Find
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Figure 2.19. A simple spatial mechanism.

in @ the translational velocity and acceleration of B, and determine the
angular velocity and the angular acceleration of the rod in the interval of con-
cern. Assume for simplicity that the ball joints are centered on the axes of the
slider guide shafts, and suppose that the joints are ideally smooth so that the
rod suffers no angular velocity about its own longitudinal axis. What will be
the effect on the rotation of the rod if the ball joint at B is replaced by a hinge
pin and yoke assembly?

Solution. The translational velocity of B is given by (2.27). We write
vg=zk=vgk=v,+ @ x| (291)
wherein the constant translational velocity of A4 is
Va=Yi=04] (2.92a)
and

I= —ai— yj+ 2k, (2.92b)

the vector of B from A, is obtained from the geometry shown in Fig. 2.19 for
points on the axes of the guide shafts. Of course,

P=a*>+ y* +2* (2.93)

relates z and y. Differentiation of (2.93) yields 2zZ + 2yy =0, and use in this
expression of the component relation from (2.92a) gives the transiational
velocity of B in @. Le., in (2.91), we now have

vy=vpk=zk= —(yv/2)k. (2.94)
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Moreover, because this equation is valid for all times in the interval of
interest, the translational acceleration of B in @ may be obtained most easily
by differentiation of (2.94). With the aid of (2.92) and (2.93), we derive

a,= —v3(l*—a?)/’k. (2.95)
Furthermore, since y=v, is a constant, we have by integration y(¢)=
Yo+ v4t, where y, is the initial value of y. Therefore, z is determined by (2.93),
and the solution for the velocity and acceleration of B in @ is now complete.

It remains to determine the angular velocity and the angular acceleration
of the rod. The angular velocity may be found from (2.91):

oxl=vg—v,= —v,(j+ y/zk), (2.96)

in which we recall (2.92) and (2.94). We form the cross product of (2.96) with
! and expand the vector triple product to obtain

(ox)xl=(o -Hl—(I-Do. (2.97)

Then we appeal to the ideal ball joint constraint, which requires that the rod
shall have no angular velocity about its longitudinal axis, that is,

o-1=0. (2.98)
Substitution of (2.98) into (2.97) and use of (2.96), as described, yields
o= ,(j+y/zk) x % (2.99)

With the aid of (2.92b), we may compute the remaining cross product to
derive the angular velocity of the rod in &:

@ = (v ,4/zP)[(? — a?)i — ayj + azk]. (2.100)

And, finally, differentiation of this result leads to the angular acceleration of
the rod in @; we get

v -
& =~ (I~ a®)(yi— gj). (2.101)

In the same manner described before, z and y may be expressed as functions
of the time alone, and in this way we shall have the complete solution.

The angular velocity and acceleration of the rod depend upon the con-
straints introduced to fasten the rod to the slider blocks. An ideally smooth
ball joint is a simple useful model, but hinged joints often are used too. To see
the effect that different types of joint models may have on the angular rates of
the rod, let us suppose that the ball joint at B is replaced by a hinge pin and



120 Chapter 2

yoke assembly shown in Fig. 2.20. In this case, we see that the rod can rotate
about the k axis along the guide shaft and about the axis B parallel to the
hinge pin; but it cannot turn about the axis y =k x p, which is perpendicular
to these directions. Therefore,

- y=0 (2.102)

defines the hinge constraint relation imposed at B on the rotations of the rod.

The vectors y=k x p and p =k x I, which generally are not unit vectors,
may be used to define the directions p and ¥ in terms of k and /, which are
more easily expressed in @. Thus, upon expanding the vector triple product
that defines y and recalling (2.92b), we find

v=kx(kx))=(k-Dk—I=zk—I=adi+ }j. (2.103)

Of course, the angular velocity of the rod is still determined by (2.96).
Forming its vector product with vy, expanding the result and introducing the
hinge constraint (2.102), we have

yx(@xh= Ho—(y-o)l=(y NDo=yx(vz—v,). (2.104)

Use of (2.103) and (2.92b) yields y-{= —(a® + y?), and substitution of (2.96)
into the right-hand side of (2.104) delivers the angular velocity of the rod
in @:

Uy

We thus find that the angular velocity with the hinge constraint is indeed con-
siderably different from the solution for the ideal ball joint case in (2.100); and
we notice that

o l=v, az/(a®>+ y) #0 (2.106)

shows that the hinged joint at B causes the rod to suffer an angular velocity
about its own longitudinal axis. Construction of the angular acceleration vec-
tor for this case is left for the reader.

Figure 2.20. Slider block, hinge pin, and yoke assembly.
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2.9.3. Velocity Referred to a Moving Reference Frame

We shall learn in future studies that often it is useful to express a vector
quantity -given in a frame @ = {F;I,} in terms of the basis vectors i, of
another reference frame ¢ = {O;i,}. When this is done, we shall say briefly
that the vector quantity is referred to frame @. In preparation for subsequent
development of the use of such auxiliary reference frames, let us consider the
following illustration, in which it is helpful to refer the velocity vector of a
particle of a rigid body to an imbedded reference frame.

Example 2.10. A thin rigid rod is supported in the vertical plane by the
edge of a wall and a horizontal surface along which its end point O is moved
with a velocity v,, in frame @ = {F;I,}, as shown in Fig. 2.21. Prove that the
velocity in @ of a particle B of the rod is directed toward O if and only if B is
the particle R instantaneously in contact with the edge C over which the rod
slides continuously, and find in frame @ the sliding velocity of R.

Solution. The end-point velocity v, =v,I=XI is given in frame &=
{F; 1, }; but it will prove useful to refer v,, to another frame ¢ = {O; i, } imbed-
ded in the rod, as shown in Fig. 2.21. To accomplish this, we need to express
the basis vectors of @ in terms of those of frame . The geometry in Fig. 2.21
yields

I=cosyi—sinyj J=sinyi+tcosyj K=k (2.107)

In the present case, only the first of (2.107) is needed to write v, in terms of
the vectors of frame ¢; we have

Vo =p(cos ¥ i—sin i j), (2.108)

and in this form we say that v,, is referred to .

Figure 2.21. Application of an auxiliary,
moving reference frame.
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The position vector of an arbitrary point B along the thin rod is x = yj,
and the rod has angular velocity o =1/K =k about point O, both vectors
being referred to ¢. Therefore, with @xx= —yyi and use of (2.108), the
velocity of B in frame @, but referred to frame ¢ for our convenience, is given
by

Vp=Vo+ O XX= (08 ) —ify)i—v,sin i j. (2.109)

 The geometry in Fig. 2.21 shows that X =/ tan y. Therefore, vo=X=
s sec? ; and with A=/ cos y, we find

vo cos Y =, (2.110)

where / is the distance from O the edge point C. Thus, use of (2.110) in (2.109)
gives

Ve=Y(l— pli—vosinyj (2.111)

for all positions of the rod. We observe that /— y is the distance from an
arbitrary particle B to the particle R which instantaneously is in sliding con-
tact with the edge C. Therefore, (2.111) shows that for y #0 the velocity of B
will be directed along the rod toward O when and only when y =/ But this
means that B must be the unique edge point particle R; hence, (2.111) reveals
that the sliding velocity in @ of the particle R instantaneously in contact with
the edge of the wall is given by

V= —UgSinyj. (2.112)

It is intuitively clear, of course, that the rod can have no velocity com-
ponent normal to itself at its point of contact with the edge C; otherwise, the
contact constraint would not be maintained. Consequently, it is easy to
understand physically why the velocity of the particle R must be directed
along the rod; but here we have learned also that R is the only particle having
this property. It is instructive to note that the angular speed of the rod and
the sliding velocity of R actually may be obtained more directly by
application of the sliding contact constraint equation vz n=v.'n, where n=1i
is the mutual normal vector to the contacting surfaces at the contact points.
With v.=0 and va=v,+oxI=v,]—li, we find at once that v i=
v, cos W — Yl =0, which states that contact will prevail provided that the rod
has the angular speed (2.110). Then the sliding velocity at R is the tangential
component vy -j= —vgsiny in the direction of j at R, which agrees with
(2.112) obtained before.

The velocity vectors of O in (2.108), Bin (2.111), and R in (2.112) are the
velocities of these particles in frame &, but they are referred to the moving,
imbedded frame ¢ for convenience. Clearly, these points have no motion
relative to @; rather, as described in our earlier study of the intrinsic velocity
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and acceleration, (2.108), (2.111), and (2.112) are the projections onto ¢ of
the velocities of O, B and R relative to frame @. Let the reader conclude this
example by showing that the velocity (2.112) referred to frame @ itself is given
by

Vp =0, siny (sin y I—cos iy J). (2.113)

We shall encounter many situations of this kind in Chapter 4.

2.10. A Basic Invariant Property of the Angular
Velocity Vector

It has been emphasized in the derivation and applications of (2.27) and
(2.30) that relative to a given reference frame @&, say, the vector @ is the
angular velocity of a rigid body # about an instantaneous axis through a
specified base point. The body may experience several simultaneous rotations
about concurrent axes through the base point, but (2.28) shows that their vec-
tor sum is equivalent to a single angular velocity vector about a single instan-
taneous axis through the same base point. On the other hand, we may ask:
What change, if any, occurs in ® if the base point is shifted arbitrarily to
another place in #? To answer this question, we let P be any point of #; and,
for the same motion of #, we assume that at the same instant ® and ®* are
distinct angular velocities of # about lines through distinct base points at O
and O¥*, respectively, as shown in Fig. 2.22. Since the velocity of any particle
P, by its definition (1.8), is the same for every base point used in application
of (2.27), using the vectors defined in Fig. 2.22, we may write for both O
and O*

Vp=Vo+®XX (2.114a)
=V« + OF X X* (2.114b)
=(Vo+OXr)+®xx* (2.114c)

wherein x =r + x*. However, with O as base point, it is clear that the term in

Figure 2.22. A change of base point in a general
motion of a rigid body.
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parentheses in (2.114c) is equal to v,.. Consequently, we have
(o* — o) x x*=0. Since P is an arbitrary particle, this relation must hold for
all x*; therefore, * = @ follows. In sum: The angular velocity vector is the
same for every choice of base point associated with a rigid body.

Let us recall, for example, the description in Fig. 2.14 of a wheel rolling
without slipping on a fixed surface. The wheel was naturally assumed to be
rotating about its center O. However, since the angular velocity does not
change with the choice of base point, we may consider that the same rotation
occurs about a parallel line through the point of contact C, for which it is
now known that v.=0. Then, with C as the base point, we may use (2.27) to
write v, =v-+ @ X (—r)= — xr, which yields the result (2.69) found before.
A similar relation may be written for any other base point. The foregoing
basic property of the angular velocity vector shows that the instantaneous
axes of rotation corresponding to all base points are parallel and the rates of
rotation about them are equal.

Thus, the angular velocity vector is a function of time alone; and, without
reference to the base point used, we may correctly refer to it as the angular
velocity of the body. As a consequence of this invariant property of w, (2.114)
becomes

Vp=Vp+®XX (2.115a)

=V + @ X X*, (2.115b)

The result shows that a motion of a rigid body due to a translation v, and a
rotation o about a base point O is equivalent to a rotation ® about any other
base point O* together with a new translation V. given by

Vor =Vy+ @ XTI, (2.116)

where T =X — x* is the vector of O* from O. Thus, a change of base point cer-
tainly results in a change of velocity for the new base point, but the angular
velocity of the body remains the same. (See Fig. 2.22.)

Two additional easy theorems follow readily from (2.115). Their proof is
left for the reader in Problem 2.70.

(i) Invariant Projection Theorem. The projections upon the instantaneous
axis of rotation of the velocities of all points of a rigid body are the same; that
is, for all points P

Vpr=Vo'@, O Vp 0=V, O, (2.117)

where a = w/|o| is the instantaneous axis of rotation and O is any assigned base
point.

(ii) Parallel Axis Theorem. The velocity of a particle P due to a pure
rotation with angular velocity ® about on axis a. is equivalent to a rotation with
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the same angular velocity about a parallel axis together with a translational
velocity perpendicular to that line, and conversely.

A motion of a rigid body # in which every particle of # moves parallel
to a fixed plane in frame V is called a plane motion of # in . It follows that
both @ and & must be perpendicular to the plane of the motion. If @ =0, the
plane motion is a pure translation with v,=v, for all particles P. If there
exists a base point O with v, =0, perhaps only instantaneously, the plane
motion is a pure rotation about an axis at O. It is not difficult to prove that in
an unconstrained motion of a rigid body in space, there is, in general, no point
having zero velocity. On the other hand, it can be shown that for a plane
motion of a rigid body, at any moment, there always exists one and only one
base point whose velocity is zero. (See Problems 2.71, 2.81 and 3.9.)

Notice that (2.117) shows that v,-a =0 if and only if either O is a fixed
base point or it has at each instant a velocity perpendicular to the axis of
rotation. In the latter case, each particle P must move at each instant in a
plane motion perpendicular to the axis of rotation; therefore, the velocity of P
is equivalent to a pure rotation about an axis parallel to a through another
base point O*, say, situated in the fixed plane of the motion. The point O*
whose instantaneous velocity is zero is known as the instantaneous center of
rotation. (See Problem 2.71.) In general, this unique base point, which often
will not be within the body, changes from place to place in the plane as the
body moves, unless, of course, the point is a fixed point about which the body
is rotating normal to the plane. The locus of instantaneous centers mapped
onto the plane is known as the space centrode. In particular, when one curved
body rolls without slipping on another fixed curved body, the instantaneous
center of the moving body is the point of contact, and the space controde is
the contact curve of the fixed body. The locus in the plane of corresponding
points referred to an imbedded body reference frame is called the body cen-
trode. Thus, we may envisage that the body centrode, the curve of instan-
taneous centers in the body frame, rolls without slipping on the space cen-
trode, the curve of instantaneous centers in the space frame. (See
Problems 2.77-2.79.)

We have seen, for example, that the point of contact of a wheel rolling
without slipping on a fixed, horizontal surface is the instantaneous center of
rotation of the wheel. Therefore, the space centrode is the straight line of the
fixed surface, and the body centrode is the moving circumference of the wheel.
Every particle of the wheel has at each instant a velocity equivalent to a pure
rotation about an axis at the point of contact C, namely, v, = o x x*, where
x* is the position vector of P from C. When the center O of the wheel is used
as the base point, the velocity of the same particle P is determined by the
same rotation about the wheel axle together with a translational velocity of O
which is perpendicular to it: vp=v,+@xx, where x is the vector of P
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from O. The parallel axis theorem and existence of an instantaneous center in
a plane motion lead to some useful graphical applications included in the
exercises at the end of the chapter. (See Problems 2.72-2.80.) Some additional
theoretical results are studied in the next section.

2.11. Chasles’ Theorem on Screw Motions

The choice of base point to be used in (2.27) and (2.30) is arbitrary, so
generally any convenient choice is admissible. In fact, we recall that the base
point need not be a material point of the body; so every conceivable point of
space is a potential candidate for use as a base point. Because of this
arbitrariness in the selection of a base point, the velocity of a rigid body par-
ticle may be characterized in an infinite variety of ways. Therefore, we are led
to question: Are there any particularly special choices of base point for which
the velocity of a rigid body particle may be most simply and uniquely
described? The answer is provided by the following remarkable theorem due
to Chasles (1830):

Theorem on Screw Motions. The velocity of any point of a rigid body is
equivalent to a screw velocity consisting of a rotation about an axis and a trans-
lation along that axis.

Proof. Let the velocity of a base point O and the angular velocity of the
body be assigned so that the velocity of any particle P of a rigid body is deter-
mined by (2.115a). We wish to show that there exists a base point O*, say,
whose velocity at each moment is parallel to the instantaneous axis of
rotation so that by (2.116)

Vor = PO =V, +@OXT, (2.118)

where r is the unknown position vector of the new base point O* from the
assigned base point O and p is an unknown scalar. If this may be done, then
with O* as the base point the theorem follows. Therefore, we shall need to
determine p and r to satisfy (2.118).

The scalar p is determined immediately by the invariant projection
theorem (2.117):

P=(vp @)w= (Vo ®)c> (2.119)

Then r is to be found from

OXI=poO—Vo= (Vg a)a—vo=uXx(axvy) (2.120)
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However, this equation does not determine r uniquely; for, if r is a solution of
(2.120), so is X =r + ko for all values of the constant k. This is simply the vec-
tor equation of the new parallel axis through O*; hence, O* may be any point
on this line and still satisfy (2.120). Therefore, we may choose O* to be at the
shortest distance from O between the parallel lines so that

rro=>0 (2.121)

must hold. Then we form the vector product of (2.120) with ®, expand the
result, and use (2.121) to obtain in terms of the originally assigned base point
data the unique location r of the point O* on the new parallel axis:

r=2x% (2.122)

w

Thus, shifting the base point to O* by using (2.118) in (2.115) yields
Vp=poO+ o xx*, (2.123)

in which x*=x—r is the position vector of P from O* on the new parallel
axis. (See Fig. 2.22.)

The equation (2.123) is the content of Chasles’ theorem. It shows that the
velocity of any particle P of a rigid body may be simply and uniquely charac-
terized by a rotation with angular velocity ® about a parallel line through a
base point O* at the unique place r from O given by (2.122) together with a
translational velocity (2.118) along that line. This is the motion typical of a
nut moved along a threaded screw; it is reminiscent of the helical motion of a
particle studied in Chapter 1. In fact, such a motion is known as an instan-
taneous screw motion; and the axis of rotation is named the screw axis. The
scalar invariant p defined in (2.119) is called the pitch of the screw; it is the
ratio of the screw translation speed to the angular speed. Hence, the speed of
translation along the screw is proportional to the angular speed about the
screw axis. (See Problems 2.83 and 2.84.)

Chasles’ method of reducing the velocity vector of a particle of a rigid
body into a screw motion is unique. To prove this important fact, let us
assume that there are two screw motions corresponding to noncollinear base
points O’ and O*, respectively. Invariance of the angular velocity vector with
respect to the base point shows that ®’ = o* =, say; and invariance of the
pitch admits p’ = p* = p, say. Thus, for the pair of screw motions with respect
to distinct base points, we have by (2.123)

Vvp=po+ 0 xx'(P)=po+oxx*(P),

in which x'(P) and x*(P) are the respective position vectors of P from O’
and O*. We thus find o x (x' —x*)=0. Since in general w0, then for dis-
tinct base points, this implies that r =x’— x*, the position vector of O* from
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O’, contrary to the hypothesis, is parallel to the screw axis. Therefore, r =0,
and we may conclude the following uniqueness theorem: There is at most one
screw motion by which a given motion of a rigid body may be produced.

Thus, it is now established that among all conceivable motions of a rigid
body there exists one of unrivaled simplicity, namely, Chasles’ unique screw
motion consisting of a rotation about an axis and a translation along that
axis. We shall learn in the next chapter that similar results can be proved for
finite rigid body displacements. However, study of finite rigid body motions
may be omitted from a first course. The reader who may wish to move on to
further applications involving relative motions and moving reference frames in
Chapter 4 will suffer no serious interruption in the continuity.
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Problems

2.1. Prove that if there is no rocking disturbance by its occupants, the dis-
placement of the cabin of a rotating ferris wheel is a parallel translation. Describe the
path followed by a typical particle of the cabin.

2.2. (a) Show that the scalar product Tx-a=0 holds for all particles of a rigid
body whose finite displacement is a rotation about a fixed line. What is the physical
meaning of this result? (b) Prove that for a nonzero vector ¢, Tc==0 if and only if ¢ is
parallel to the axis of rotation of the body; otherwise, T = 0.

2.3. Two particles of a rigid body initially are located at
X,=2i+3j—km and Y,=-3i+2j+6km

in @ = {F;i.}. After a finite displacement of the body, these particles are, respectively,
positioned at

X,=4i-3j+km and Y,=—i—4j+8km

in @. Prove that the displacement is not a rotation about a fixed line in @. See
Problem 2.2

2.4. Show that equation (2.7) for the displacement of a particle of a rigid body
due to a finite rotation about a fixed line may be written as

d(P)=£1|:uxxcosg+ax(axx)sing],
p 2 2

wherein d=|d|, p=|p| and the other terms are the same as before.

2.5. Let x(P, t) be the position vector of a rigid body particle P from a point O on
a fixed axis with direction a; and consider the differential equation x’ = a x x subject to
the initial condition x(P,0)=x,. The prime denotes d/df and the angle 6(¢), with
0(0) =0, is the rotation about a. Prove that x - a is a constant, and derive the relation

x"+x=(a"Xq)a.
Show that the solution of this vector differential equation is
x(P, t)=A cos 6(t) + B sin 6(1) + (- x,)a,

in which A and B are constant vectors. Find these vectors, and thus show that the
solution may be written in the form of (2.7). Hint: Notice that x’ is perpendicular to a.
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2.6. The figure shows a spatial control device consisting of a drive shaft 04
positioned on the line x, = x,=x, and connected rigidly to a curved link OB whose
end B is constrained by a pin P to slide in a curved door panel of an aircraft. To
operate the mechanism, the shaft OA is rotated from its initial position through an
angle 8 = 60°, as indicated. Find the displacement of P when its initial position from O
is x= —i+2jft in &= {0;i,}. What is the final location of P in ®?

Problem 2.6.

2.7. How many independent coordinates are required to specify the locations of N
particles free to move in space? How many degrees of freedom does this system have if
one of the particles must remain at the origin of the reference frame?

2.8. Assign independent coordinates adequate to specify the position of a system
of four rigid rods hinged together to form a quadrilateral that may move arbitrarily in
a plane. (a) How many degrees of freedom does this system have? (b) How many
degrees of freedom does the system have when one hinge point is fixed in the plane?
(c)If one hinge pin is removed, how many additional degrees of freedom does the
system possess?

2.9. Assign independent coordinates that adequately describe plane configurations
of the systems shown in the figure, and determine the number of degrees of freedom for
each case.

Hinge
9 Springs

[B v W5 ]
V2

Particle Small Biocks

{a}: Scissors {b): Simple and Double Pendulums {c): Spring System Problem 2.9.

2.10. A rectangular container initially positioned with its center C at the place
(4, 6, 8) in a fixed frame & is transported to a new configuration so that C is at the
place (6, 8, 10) and the container, in its new location, has been rotated 45° about a
fixed line through C and the origin of ®. A point T at the top of the container initially
is at the place (4, 6,9) in @. What is the displacement and the final location of T"in ?

2.11. (a) A unit cube undergoes an infinitesimal rotation 46 about its diagonal.
The displacement of the particle at 4=(1, 1,1) in frame & = {F.1,} is plainly zero.
What is the infinitesimal displacement of the particle at B=(1,0, 1) in @? (b) Suppose
that this rotation is viewed as the composition of the corresponding three equal
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infinitesimal, component rotations of the cube about its three edges through O. What
are the resultant displacements of the particles at 4 and B in #? (c) If the rotation in
(a) is considered as the composition of three equal infinitesimal rotations about the
face diagonals through O and the points (1,0, 1), (1, 1,0), and (0, 1, 1), are the dis-
placements of the particles at A and B the same as before? (d) Discuss the results of
these three cases.

2.12. If a body is rigid, the velocity of each of its particles P is determined by
(2.27). Conversely, suppose that a body moves so that in every motion the velocity of
each of its particles is given by (2.27). Prove that the body is rigid.

2.13. Use (1.70), (1.71), and the relation § = pf to derive the equations (2.27) and
(2.30) for the rigid body velocity and acceleration of a particle P rotating on a circle of
radius p with angular speed 6§ about a fixed axis a=b.

2.14. Use the geometrical interpretations of the terms in (2.27) and (2.30) to
determine the velocity and acceleration of the rim particle P in Fig. 1.14. Check your
solutions against (1.78). See Example 1.8.

2.15. Apply equations (2.27) and (2.30) to determine for the conditions specified
in Problem 1.12 the velocity and acceleration of the mass M. Note the geometrical
nature of the terms computed.

2.16. Employ (2.27) and (2.30) to find the velocity and acceleration of the ball P
in Fig. 1.3. Use the conditions described in Example 1.3, and compare your results with
those in (1.17). Observe the geometrical character of the terms computed.

2.17. The slider block of a machine oscillates along a straight line; and at the
instant illustrated, it has a speed of 30 ft/sec and is accelerating at 10 ft/sec’ toward the
right. The connecting rod 4B has an angular speed of 4 rad/sec and an angular
acceleration of 8 rad/sec? clockwise about its hinge at A4, and the rod is in a vertical
position. Determine for this instant the velocity and acceleration of the connecting pin
B relative to the slider and relative to the machine foundation.

30 ft/sec; 10 ft/sec?
pih

Problem 2.17. Pivot Stider

2.18. A hydraulically actuated piston B is connected by a link BC to a gear G that
rolls on a fixed ring gear R of radius b, as shown. Show that the ratio of the speed v*
of the slider to the speed v of the center C of the gear is given by

v* sin(60—4)

v cosf
2.19. The crank device of a metal forming press shown in the figure is used to
drive the ram head for the forming dies. The die design requires knowledge of the ram

velocity as a function of its distance 4 above the bottom of the ram stroke. Assume
that the crank OA turns with a constant angular velocity @ and that r// <1, where r is
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Problem 2.18.

the crank radius and / denotes the length of the connecting rod. Determine the velocity
of the ram as a function of A. Find the angular velocity of the connecting rod 4B.
What is the maximum velocity of the ram head?

Stroke

Bottom_.L Problem 2.19.

2.20. A rigid of length 2/ slides in the plane, but its ends maintain contact with the
wall at 4 and ground at B, as shown. If B moves to the right with a constant velocity
v, what are the accelerations of the end 4 and the midpoint C? Determine the trajec-
tory of C.

Problem 2.20.

2.21. The ends of a rigid bar 4B of length \/f ft are constrained to move in guide
slots. At the instant r, shown in the figure, the end B has a velocity of 2 ft/sec and an
acceleration of 4 ft/sec’ toward the right. Find the velocity and acceleration of the end
A, and determine the angular velocity and acceleration of the bar at the moment ¢,.
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Problem 2.21.

2.22. During an interval of its motion, the slider block S has a constant vertical
velocity vg. Determine the angular acceleration of the link OA4 when the mechanism is
in the position shown.

Problem 2.22.

2.23. A slider block B is connected by a hinged link BC to the piston rod HC of a
hydraulic actuator 4. During an interval of its plane motion, the piston rod has a con-
stant velocity v.=40jcm/sec in &={C;i,}. Find the absolute velocity and
acceleration of B in @ when C is at the position shown; and determine at this instant
the angular velocity and acceleration of the link.

Problem 2.23.

2.24. The control wheel of a crank device is turning clockwise at a rate of
@, =4 rad/sec, which is growing at the rate of 2 rad/sec® at the instant ¢, when the
device is in the configuration shown. Find the total velocity and the total acceleration
of the connecting link pin B; and determine at the moment ¢, the angular velocities
and the angular accelerations of the crank links 4B about 4 and BC about C.

. &: - 4K rad/sec

6cm

Problem 2.24.
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2.25. An equilateral triangular frame that moves freely at A controls the motion
of a slider B through a hydraulic actuator D. The piston rod, which is hinged to the
frame at C, moves with a constant velocity v = 30i cm/sec during a time interval in
which C passes the location shown. Determine at this instant the velocity and
acceleration of the slider B, and find the angular velocity and angular acceleration of
the triangular frame.

Problem 2.25.

2.26. The trammel shown in the figure consists of a rigid rod AP of length /
hinged at 4 and B to blocks that slide in the cross slots. The distance between 4 and B
is d. (a) Use (2.27) to determine the velocities of particles A, B, and P. Integrate v, to
derive the equation of the path traced by P. (b) Apply (2.27) to find the velocity of the
midpoint C. Integrate the result to find the path of C.

Problem 2.26.

2.27. In the last problem, let /=14 cm and d=8 cm. Suppose that the trammel
rod rotates as shown with a constant angular speed of 4 rad/sec. Employ equation
(2.30) to compute the accelerations of P and C when 0 = 30°. Check your solutions by
differentiation of the results obtained in the last problem. Write the equations of the
paths traced by P and C.

2.28. The slider 4 of a mechanism moves in a straight track. In the position
shown, the hinge pin B has a speed v,=361in./sec and the link BC has an angular
speed w, that is decreasing at the rate of 12 rad/sec each second in frame @ = {F;i,}.
Find for this instant in & the acceleration of the slider and the angular acceleration of
the link AB.

Problem 2.28.
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2.29. The link 4B of a slider mechanism has an angular velocity @, = 0.5k rad/sec
and an angular acceleration @, = 1.5k rad/sec? relative to a fixed frame ¢ = {4;i,} at
the moment ¢, shown in the figure. What is the angular acceleration of the rod BC
relative to ¢ at the time #,?

Problem 2.29.

2.30. A mechanism has a slider that moves in a parabolic track with a speed of
10 cm/sec which is changing at the rate of 20 cm/sec each second at the instant when
the links 4B and BC are in the position illustrated. Find the velocity and acceleration
of the hinge pin B in its plane motion at this instant, and determine the angular
acceleration of each link in frame @ = {F;i,}.

Problem 2.30.

2.31. A four-bar linkage consists of a drive crank AB of length a that rotates with
a known angular speed w, a connecting link BC of length b, a follower link CD of
length ¢, and a fixed link AD that often is part of the foundation of the machine. Find
the velocity of joint C as a function of the parameters shown. Evaluate the result for
=25 rad/sec, 0=60°, § =45°, 2a=c=>508 mm, b= 548 mm. What is the length of
the link AD?

Problem 2.31.

2.32. Two cylinders 4 and B turn about their respective axes C and D within a
rigid housing H. A rod R is hinged at P to the cylinder A4, which has a clockwise
angular velocity @ ,, and it slides in a block D welded to B so that its center line coin-

Problem 2.32.
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cides with a diameter of B. Find the angular velocity @z of B expressed as a function of
the angle . Write a program to compute the ratio wg/w , of the angular speeds as a
function of 8 with a fixed ratio b/a of the dimensions shown. Graph the result for
bja=2, 5, 10 and 0 <6 < 2n. Determine the angles 6 for which wz=0.

2.33. The boss has decided that a general analysis of the design problem described
in Example 2.4 is desirable. The cam is to have rise » and produce a sinusoidal velocity
of the shuttle drive block 4 given by v, =v cos 8 i, where v is a constant and §(0)=0
initially. The cam dimensions e and d are constants. The length / of the link 4B must
be chosen so that @, =0 at the instant ¢, for which 6(s,)=0, and ¢(t,)=¢, are
assigned. (a) Determine the shape r(8) of the cam and the required angular operating
speed w. (b) Find the velocity and acceleration of the link pin B at t,, and determine
the required link length /, all expressed in terms of the assigned data. Check the results
for the conditions specified in Example 2.4.

2.34. A wheel of radius 30 cm rolls without slipping down an inclined plane at the
controlled rate of 15 m/sec. What are the velocity and acceleration of a point P on the
wheel rim at the position shown? What is the angular velocity of the wheel? What is
the influence of the inclination of the plane?

Problem 2.34.

2.35. The drive mechanism for a phonograph turntable of radius R is shown in
the figure. The motor shaft turns the gear 4 with a counterclockwise angular speed w,,
and A engages an idler gear B which drives the turntable at an angular speed w,, as
indicated. (a) Find the radius of the drive gear 4. What function does the idler gear
perform? (b) Compute the drive gear diameter required to move a 9-in.-diam turntable
at 334 rpm with a motor rated at 400 rpm.

Problem 2.35.

2.36. Guided by a flange of radius b, a train wheel of radius « rolls without slipp-
ing on a horizontal track. The wheel has angular velocity o and angular acceleration
®, as shown. Determine as functions of the angle ¥ the velocity and acceleration of a
point P on the rim of the flange.

Problem 2.36.
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2.37. A flexible, inextensible string is wrapped around a spool core of radius a.
The spool, with outer radius b, rolls without slipping along a fixed, horizontal surface
as the string is pulled with a constant horizontal velocity v, as indicated. (a) Show that
the velocity of the spool center O is in the direction of the pull. (b) Determine the
velocity of the points O, P, and Q for the case b= 2a. Find the trajectory of the point
Q, and describe the curve.

Problem 2.37.

2.38. The segment of a circular cylinder of radius R, initially at rest on a horizon-
tal plane, as illustrated, is slightly disturbed to perform rocking oscillations without
slipping so that 6 =6, sin pr, the constants 6, and p denoting the small amplitude and
circular frequency of the angular motion, respectively. Find the velocity and
acceleration of the point C on the axis of symmetry at the distance 4 from O in ¢ =
{0;1,j}.

Initial
[Configurat on

4
S

Problem 2.38. i

2.39. The face angle ¢ of the bevel gear assembly shown in the figure is chosen so
that the gears properly roll on each other at all points of contact along the line 40".
Prove that this arrangement is impossible unless P and O’ coincide.

Problem 2.39.

2.40. Two gears 4 and B are held in rolling contact by a link of length / between
their centers, as shown. The gear 4 of radius R rotates clockwise with angular velocity
o, about O in &= {0;i,}, while the gear B of radius r rolls on the periphery of 4
with counterclockwise angular velocity @ relative to @. Find the angular velocity of
the link in &.

2.41. Planetary gears are used in transmission systems that require gears that can
be shifted while remaining interlocked. In the shifting process, power transmission is
altered by stopping one or more gears. A typical planetary gear train consists of a sun
gear X of radius a and three planet gears P of radius b set in a ring gear housing R, as
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Problem 2.40.

illustrated. The planet gear bearings are mounted in a tripod frame S called the spider.
Suppose that the sun gear turns counterclockwise with an angular velocity « while the
ring gear is fixed in frame &. Find the angular velocities in @ of the planet gears and
the spider. How are these related to m when r=3a?

J G & i
bz, Planet Gear
F 1 Problem 2.41.

2.42. Determine the angular velocities in @ of the planet gears and the spider
described above for the case when the sun gear is stopped and the system is driven by
the ring gear, which has a counterclockwise angular velocity Q. How are these rates
related to £ when r = 3a; and, additionally, when Q = o, how do these rates compare
with those found in the previous problem?

2.43. The sun gear of the planetary gear train described in Problem 2.41 rotates
with angular velocity ® while the ring gear turns with angular velocity €, relative to
frame @. Find the angular velocities of the spider and planet gears in @. Check your
results for the conditions set in the previous two problems. Discuss conditions
necessary and sufficient for (i) the spider to remain at rest while the planets turn, and
(i) the planets to stop while the spider turns. Is it possible for the spider and planet
gears to rotate at the same rate? Can they rotate at the same rate about opposite direc-
tions?

2.44. The planet gear B rolls on the fixed sun gear 4 such that the drive link OB
turns counterclockwise at 90 rpm, as shown. When the gears are shifted, the ring gear

Problem 2.44.
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R is held fixed and the sun gear rotates about O, while the rotation of OB is
unchanged. Determine the angular velocity of gear B for each case. What is the ratio of
the corresponding angular speeds of the sun and ring gears for these two cases?

2.45. Two shafts are mounted in bearings and geared together as shown. A
flexible, inextensible cable wound on the drum D, which is attached rigidly to the gear
B, supports a crate C. The gear 4 turns clockwise with angular velocity @ and angular
acceleration @. Determine the velocity and acceleration of the crate.

Problem 2.45.

2.46. During an interval of its motion, a gear B of radius a rolls on a horizontal
gear rack CD with a constant angular speed Q2 =4 rad/sec. At the moment ¢, shown in
the figure, the link OA is parallel to the rack CD. Determine the angular acceleration
® of the link OA4 at ¢,.

Problem 2.46.

2.47. An inextensible cable is wound on a drum of radius R shown in the figure.
The axle O of the drum assembly is guided by a vertical slot so that the pulley of
radius r winds up the suspension cable S7, as the end point P descends with speed v
and acceleration a. Determine the velocity and acceleration of O; and find the angular
velocity and acceleration of the pulley.

Problem 2.47.

2.48. One end of a rod of length / is pinned at 4 to a gear G that rolls on its
horizontal rack with angular velocity @ and angular acceleration é. The other end of
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the rod is pinned to a slider B which is constrained to move in a horizontal slot. Deter-
mine the velocity and acceleration of B when 4 is in the position shown.

Problem 2.48.

2.49. The large G rotates counterclockwise with a constant angular speed of
4rad/sec in @ = {0;i,}. The right-angled frame A0B is free to turn independently
about O, and two planet gears that mesh with G are held in bearings at 4 and B. At
the instant #,, the frame has a clockwise angular speed of 5 rad/sec, which is decreasing
at the rate of 15 rad/sec each second, relative to @. Determine relative to @ the angular
velocity @ and the angular acceleration @ of the planet gears at the moment £,

4 rad/sec

Problem 2.49.

2.50. Elliptic gears sometimes are used in variable speed drives, such as quick
return mechanisms. To maintain driving contact without slip, the gears must be iden-
tical and each must turn about one of its foci, as shown in the figure. If the gear 4
rotates counterclockwise with a constant angular speed w ,, show that the maximum
angular speed of the gear B is given by wp=0w (D/C—1). What is its minimum
angular speed?

Problem 2.50.

2.51. Two plane, curved rigid bodies have angular speeds w, and w5 about fixed
centers at 4 and B in their plane. Let x, and x5 denote the corresponding position
vectors from 4 and B to the instantaneous point of contact C between the bodies.
(a) Show that in driving contact with slip the ratio of the angular speeds is equal to the
inverse ratio of the projections of the corresponding position vectors upon the tangent
line to the contacting surfaces at C. (b) If the driving contact between the bodies is
maintained without slip, show that, in addition to the previous result, the ratio of the
angular speeds is equal to the inverse ratio of the projections of the position vectors
upon the normal line to the contacting surfaces at C.
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2.52. The connecting rod AB of the mechanism shown in the figure is pinned at 4
to a gear G of radius 8 cm and at B to a slider block that drives the device so that the
gear rolls on its horizontal rack. During the interval of interest, the slider block,
initially at rest at C, moves with acceleration a(B, t) = 181i cm/sec’ in & = {0;i, }. Find
the angular velocities ®, and o, of the rod and the gear, respectively, after 2 sec. What
are their angular accelerations at that time?

4cm T .
g G i
8cm : w
1 B
] e —_— i
Rackd O C alB .1
Problem 2.52. e—16 cm —

2.53. A rigid rod of length 25 cm, pinned at 0 and B, controls the motion of a
slider B through a rack and pinion arrangement shown in the figure. During an inter-
val of interest, the center O of the pinion gear G of radius 5 cm is moved with a con-
stant velocity v, = 40i cm/sec in the fixed frame @ = {Fi,}. At the instant shown, the
rack gear has a speed of 20 cm/sec which is increasing toward the left at the rate of
15 cm/sec each second. (a) Find the angular velocity and acceleration of G. (b) What is
the absolute acceleration of the contact point C on G? (c) Determine the absolute
velocity of the slider. (d) Find the angular velocity £ of the rod 0B.

Problem 2.53.

2.54. The slider block B drives the device shown in the figure so that the gear G of
radius 6 cm rolls on its horizontal rack. In 2 sec, B moves from its initial rest position
at C to the position shown; and during this time, it has the acceleration a(B, t) =

Problem 2.54.
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12¢%e cm/sec” in @ = {O; i, }. The design specifications for the machine require that the
angular speeds of the rod AB and the gear G be the same at the time shown. Find as
functions of § the angular velocities «@, and ®, of the rod and the gear, respectively, at
the time of interest; and determine the values of 8 and / needed to meet the design con-
dition. Show how the value of # may be estimated graphically, and use this trial result
to compute its value more precisely.

2.55. The drive wheel D of a mechanism shown in the figure turns at a constant
angular rate w, = 6 rad/sec in the ground frame @ = {F;n,}. The gear G rolls on the
fixed ring gear R. Determine the velocity and acceleration in @ of the center of G.
What are the angular velocity and angular acceleration of G in @?

Problem 2.55.

2.56. Two points 4 and B of a rigid body are 20 cm apart on a line parallel to the
vector u=3i+4j in &= {0;i,}. At the instant ¢,

v , = 16i — 8j + 5k cm/sec, v, = —16i+ 16§ + 30k cm/sec,
4a ,=75i+ 24k cm/sec’, and @ = 2i+ 4j rad/sec’.

If the component of @ in the direction of the line is zero, find the acceleration of B
at ;.

Problem 2.56.

2.57. A rigid body is spinning with an angular speed of 20 rad/sec in_the right-
hand side of increasing values of points along the line 2x —4 =2y —6=.,/2z in &=
{F;i.}. The body is given an additional angular velocity @ =4i—2j—5 \/ik rad/sec
about an intersecting line through Q =(2, 3,0) in @. The velocity of the particle at
X=10i+3jft from F is vp=25(i+./2j)— 12k ft/sec. Find the velocity of @, and
derive the equation of the new axis of rotation in @.
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2.58. An inextensible belt CD is used to transmit nonslip rotary motion between
two nonintersecting, perpendicular axles of a pulley system shown in the figure. During
the start-up period, the pulley 4 has a constant angular acceleration @ ,, and after
10 sec it attains the angular velocity @ , = (1800/z)k rpm in & = {4; i, }. (a) Determine
for this instant the velocity and acceleration in @ of the point D of the belt, and the
acceleration in @ of the rim particle P on the pulley B, as shown, in measure units of
m/sec’. (b) More generally, let 7, and r, denote the respective radii of the pulleys, and
derive expressions relating the angular speeds and accelerations of the pulleys for
transmission of the motion without slip.

Problem 2.58.

2.59. Two points P and Q of a rigid body at the instant ¢, are located at
X(P, t,)=2i+3j+ 4k m, X(Q, t5)=3i+4j+km

in &= {F;i,}, and their corresponding velocities are given by v(P, to)=i+4j+
2k m/sec, v(Q, t,)=2i+ 3j+ vk m/sec. (a)Determine the unknown component v.
(b) The angular velocity of the body has a component in the direction from P to @

equal to /11 rad/sec at ¢,. Compute the angular velocity of the body at this instant.

2.60. The figure describes a space mechanism having a rigid, triangular crankshaft
0OAC fixed in vertical bearings at O and C, and rotating with a constant angular
velocity @, = 10j rad/sec. The connecting rod BD is held at B in a smooth ball socket
set in a sleeve bearing that is free to turn on AC, while the end D may rotate in a
sleeve bearing on the piston pin. The piston oscillates in its cylinder without rotation
of its connecting rod about its axis. At the end of its compression stroke, the piston
and its drive linkage are in the configuration shown. (a) Determine at this moment the

e 2\\

Crankshaft —

Problem 2.60.
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velocities and accelerations of the center points 4, B, and D, the angular velocity and
acceleration of the connecting rod, and the angular velocity of the crankshaft referred
to the imbedded frame ¢ = {A4;e,} indicated. (b) Repeat the analysis for the con-
ditions when the crankshaft has advanced 90° more.

2.61. The crank OA4 of a four-bar space linkage mechanism has a constant
angular speed @ = 50 rad/sec, as illustrated. Find the velocity of the center of the ball
joint B, and compute the angular speed @ of the follower crank CB at the moment
shown. Assume that the coupler link 4B has no component of angular velocity about
its own axis.

Problem 2.61.

2.62. The crank 4B turns about the horizontal axis with a time-varying angular
speed w,(¢) in @ = {F;1,}. The connecting link BC is held in smooth ball joints at its
ends, and its motion drives the crank CD to rotate about the vertical axis. Find in @
the angular velocities and accelerations of the connecting link BC and the crank CD
for the configuration shown.

Problem 2.62.
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2.63. A gear G of radius r rolls on a fixed circular gear track of radius R, as
indicated. Find the velocity and acceleration of the center 4 of gear G, referred to ¢ =
{0;t,n}.

Problem 2.63.

2.64. A thin rigid rod of length / slides in the plane so that its end B has a con-
stant speed v = 100 cm/sec along the ground, toward the right. What is the velocity of
the point of the rod in contact with the edge 4 of the supporting wall for the con-
figuration shown?

Problem 2.64.

2.65. During a period of its motion, the slider block B has a constant speed of
20 ft/sec directed as shown. A slotted drive link is hinged at B and constrained to slide
on a fixed guide pin 4. (a) Determine the angular velocity of the drive link 4B as a
function of the angle 6. (b) Find the velocity and acceleration of the point on the cen-
ter line of the link instantaneously coincident with the center of the pin when 0 =45°.

Problem 2.65. 20 ft/sec

2.66. The end A of a thin rigid bar moves in the plane with a constant speed v
along a semicircular wall of radius r, as shown. Find as a function of 6 the velocity of
the point B of the rod coincident with the edge of the wall, and determine the angular
velocity of the rod.

7

Problem 2.66.
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2.67. The figure shows a gear G at the instant ¢, rolling on its horizontal rack so
that its center has the velocity v = 32i cm/sec; the connecting link 4B has an angular
acceleration @, =0.8k rad/sec’; and the slider block B has acceleration a,=
48i cm/sec” in frame & = {0;i,}. Determine the intrinsic velocity and acceleration of
the pin center A4, and find the radius of curvature of its path at the time 7,. What is the
angular acceleration of G at ¢,?

]

i

Path of A ke
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2em o A
8cm . X

} Gear i ettt 8
W ———}
Rackd” O] ag
40 cm Problem 2.67.

2.68. A gear mechanism consists of a rack R and pinion P of radius a= 2.5 cm.
The rack is hinged to a slider 4 that moves in a horizontal slot with constant speed
v, =0.25 m/sec toward the right. Determine for the instant shown the angular velocity
and acceleration of the pinion.

Problem 2.68.

2.69. A vehicle A moves with a constant speed of 40 ft/sec up a plane inclined at
30°. A rigid shaft 4B is attached to 4 and to a drive gear B which turns with a con-
stant angular velocity o =20k rad/sec. Find at the moment shown in the figure the
intrinsic velocity and acceleration of the rim point P on the gear, and determine the
radius of curvature of its path.

Problem 2.69.
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2.70. Prove the invariant projection and parallel axis theorems for rigid body
motions. (See Section 2.10.)

2.71. Prove that in a general plane motion of a rigid body there always exist one
and only one base point which momentarily is at rest. Therefore, this point, which
need not be within the body, is the instantaneous center of rotation for the plane
motion. Find its location from an assigned base point. What happens to the instan-
taneous center of rotation as @ approaches zero?

2.72. In an arbitrary plane motion of a rigid body, let the velocities of two par-
ticles O and P in the plane be given at an instant #,. Show that the intersection point
C of lines drawn in the plane perpendicular to v, and v, at O and P is the instan-
taneous center of rotation. Describe how you would use this information to find
graphically the speed v, of any other point Q at r from C at the moment ¢, shown in
the figure. What is the angular velocity of the body at ¢,?

Problem 2.72.

2.73. Apply the results of the last problem to find in terms of assigned quantities
the location of the instantaneous center of rotation for each of the following cases:

a. the connecting rod shown in Problem 2.19.

b. the train wheel illustated in Problem 2.36.

c. the coupler BC described in Problem 2.29. Find the angular velocity of BC at
to-

d. the rod AB in the figure of Problem 2.22. What are the angular velocity of AB
and the velocity of 4 at the position shown?

2.74. Apply the method of instantaneous centers to solve Problem 2.48. Find the
instantaneous center both graphically and analytically.

2.75. Construct graphically the instantaneous center of rotation of the coupler bar
BC of the four-bar linkage described in Problem 2.31. How many instantaneous cen-
ters does a four-bar linkage have? Where are those for Problem 2.31 located? Show
that the connecting rod in Problem 2.19 may be viewed as a special case of a four-bar
linkage. How many instantaneous centers does it possess? Use the method of instan-
taneous centers to find the angular speeds of the links BC and CD, and the speed of
joint C of the four-bar linkage.

2.76. Locate in terms of assigned quantities the instantaneous center of rotation of
the rack shown in Problem 2.68. Determine the angular velocity of the rack at the
moment of interest. What is the corresponding angular velocity of the pinion?

2.77. Determine in terms of the assigned quantities the location of the instan-
taneous center of rotation for the rod described in Problem 2.20. (a) Use the instan-
taneous center to determine the angular velocity, and find the angular acceleration of
the rod as a function of y. What is the velocity of point A as a function of ¥#? (b) Let
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@={F;1,J} be a frame fixed in space at the corner of the wall with J directed ver-
tically; and let @ = {B;i,j} be another frame fixed in the rod with j directed from B
toward 4. Derive the standard equations of the locus of instantaneous centers referred
to @ and to ¢. These curves are the space centrode and the body centrode for the
motion of the rod, respectively. Sketch and label these curves. What is the angular
velocity with which the body centrode rolls upon the space centrode for this motion?

2.78. Solve the last problem for the case when the angle 8 = / AFB between the
wall and the ground may be greater than a right angle. Assume that the rod moves
with its ends constrained to the lines F4 and FB, and B has the constant velocity
v=1l, as before. What can be said about the case when 0 is less than 90°?

2.79. Apply the method of instantaneous centers to determine for the conditions
in Problem 2.66 the angular velocity of the rod and its sliding velocity at the sup-
porting edge of the cylindrical wall. Derive the standard equations of the space and
body centrodes, and identify them in a sketch for a typical position of the rod. What is
the angular speed of the body centrode as it rolls upon the space centrode? (See
Problem 2.77.)

2.80. The figure shows the free foci C and D of identical elliptical wheels connec-
ted by a link of length /. The gear teeth at the extremities of the major axis suffice to
carry the wheels past the dead motion points that occur when the link axis coincides
with the line between the fixed axles at 4 and B. The rotation of wheel 4, which has a
constant angular velocity ® ,, is transmitted by driving contact without slip to wheel
B, which acquires a variable angular velocity @ . (a) Use the method of instantaneous
centers to find w, as a function of the angle 6 and the assigned parameters. Check
your result by comparison with the solution to Problem 2.50. (b) What is the angular
velocity @, of the link as a function of 67 (c) Determine the angular speed ratios
wg/w, and o, /o, in terms of the eccentricity defined by e=d/l. Hint: It may be
helpful to recall the basic property of an ellipse that |[4Q| +|QC| =1

Problem 2.80.

2.81. Prove that in a plane motion of a rigid body there is just one point having
zero instantaneous acceleration, its location from the base point O in the plane of
motion being given by

w a,+ G xa,
Y
2.82. A wheel of radius r rolls without slipping along a straight horizontal track,
its center O having a constant acceleration a,=ai parallel to the track. Find the

position relative to O of the point of the wheel that has zero instantaneous
acceleration. What is the locus relative to O of all such points? (See Problem 2.81.)
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2.83. Let the velocity of a base point O and the angular velocity of the body be
assigned so that the velocity of any particle P of a rigid body is determined by
(2.115a). And let v, and v, denote the component vectors of the velocity v, normal
and parallel, respectively, to the instantaneous axis of rotation defined by @. Use this
decomposition and apply the parallel axis theorem to construct an alternative proof of
Chasles’ theorem on screw motions. What interpretations may be assigned to screw
motions having zero or infinite pitch?

2.84. The angular velocity of the body in the motion described in Problem 2.56 is
®=i—0.75j+ 2k rad/sec. Find at the moment of interest the instantaneous screw
motion of the body, i.e., determine the pitch of the screw and the location of the screw
axis from point 4.




3

Finite Rigid Body
Displacements

3.1. Introduction

Our study of rigid body motion thus far has focused mainly on equations
(2.27) and (2.30) for the velocity and acceleration of a body particle. Although
they actually represent nothing more than the application of the defining
equations (1.8) and (1.9) to the special class of rigid body motions, these
rudimentary equations were found to be especially useful because they
separate and exhibit clearly the translational and rotational parts of the
body’s motion in space, and the terms have simple geometrical and physical
interpretations. We have seen in several examples that a major advantage of
these relations is that the usual differentiation operations have been replaced
almost entirely by simple vector algebraic operations. Moreover, as shown in
Examples 2.3 and 2.4, equations (2.27) and (2.30) also may be used to obtain
information when only the values of the vectors at a particular instant of time
and not the vector functions themselves are given in a problem. We shall see
in the next chapter that these basic equations play a particularly important
role in the description of motion referred to a moving reference frame.

Presently, however, we wish to recall that their derivation evolved from
the basic relation (2.7) for the displacement of a rigid body due to a finite
rotation about a fixed line, and from the application of primary theorems due
to Euler and Chasles for finite rigid body displacements. The proof of Euler’s
fundamental theorem, Chasles’ theorem on screw displacements, and some
other results concerning the composition of finite rigid body displacements
will be presented in this chapter.

The study of finite rigid body displacements is simplified considerably by
application of the elementary properties of matrices and of certain linear
transformations called tensors. It is assumed that the reader is familiar with

151
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the topics on matrices reviewed in Appendix B. The fundamental properties of
(Cartesian) tensors will be introduced following a brief description of the use
of index notation and the summation rule. It will be shown later that the
rotator is, in fact, a tensor; and we shall learn how the angle and axis of the
rotation may be easily found when the components of the rotator are known.
The rotator will be linked to another important tensor, called the rotation
tensor, that eventually will enable us to relate the rotation of a rigid body
about a point to its rotation about a line in the proof of Euler’s remarkable
theorem. These developments will play a central role in the investigation of
the proof of Chasles’ notable screw theorem and in the study of the com-
position of several rotations of a rigid body.

Some of the topics that follow concern subject matter that has grown
increasingly important because of intense industrial interest in the design and
precise control of finite robot motions and their relation to the study of
human body motions, for example. Therefore, the reader may find that
understanding the major theorems and learning how to solve some simple
problems involving several finite rigid body displacements will prove useful in
his future study of topics in other areas, such as biomechanics, robotics,
mechanical design analysis, the mechanics of solids and fluids, and applied
mathematics. Several examples and applications of the theory will be presen-
ted in the text, and numerous additional illustrations are provided for the
student in the Problems at the end. We shall begin with some notational mat-
ters.

3.2. Index Notation

Index notation will be used in future applications to abbreviate vector
components, to identify the elements of matrices, and to represent the com-
ponents of certain operators called tensors, which will be introduced later. In
every case, a principal advantage of the index notation is that it facilitates the
writing of repetitious equations in a way that enables one to see at a glance
the overall structure of these equations. The three equations

a;+by=cy, ay+bhy=cy, as+by=cs,
for example, may be abbreviated by index notation to read
a+b;=c;,

wherein the range of the index j= 1, 2, 3. The index j has no special significan-
ce—it is only a label that denotes collectively any one of the numbers in its
range. Thus, the expression a, + b, = ¢, for k=1, 2, 3 represents the same set
of equations above. On the other hand, without further specification of how



Finite Rigid Body Displacements 153

the indices are to be chosen from their range, an equation of the sort
a,+b,=c; conveys no meaning whatsoever. The same applies to quantities
with two or more indices. For instance,

A;+B;=C; and A4,+B,=C,

i q

represent the same set of nine equations, while A+ By, = C,;, without further
explicit instructions, is meaningless.

3.2.1. The Delta and Permutation Symbols and the Summation Rule

Let us recall that an orthonormal triple of basis vectors e, has the follow-
ing properties [cf. Appendix A, equations (A.4) and (A.10)7]:

e e =1, e e, =e, e, =0,., (3.1a)
e, xe; =0, e Xe,= —e,Xe; =€s,... (3.1b)

These products may be conveniently summarized with the use of the
Kronecker delta and permutation symbols, respectively, defined by

1 if i=j(nosum),
d,= 32
v {0 if i#j, (32)
+1 if ijk=123, 312, or 231,
ep= { —1 if ijk=321,132, or 213, (3.3)
0 otherwise.

Expressed in these terms, all 18 relations in (3.1a) and (3.1b) may be written
briefly as follows:

ei'ejzaija (3.4a)
e, xe =¢;.€ (3.4b)

in which each index i, j, K may have any value in the range 1-3, and in (3.4b)
we have introduced the following useful rule.

Summation Rule. An index that appears twice and only twice in any term
is to be summed over its range from 1 to 3, unless explicitly directed otherwise.

Let us verify equations (3.4). Upon setting i=1 and j=2 in (3.4a) and
using (3.2), we see that e, -e,=3J,,=0. And, similarly, e, e, =4§,, =0. With
i=j=1, we find e, -e, =§,, = 1. These results agree with (3.1a), as required.
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Further, putting i=1 and j=2 in (3.4b), summing over the range of the
repeated index %, and using (3.3), we obtain, for example,

€; X €y =¢&5€, =E15)€; + 6158, +&3€3=¢€;.

Similarly,

€,X € =¢6y,8, =6y3€,=—€; and e, xe =g e =0

It is seen that these relations agree with (3.1b). It is evident from (3.2), (3.3),
and the applications in (3.4) that the delta and permutation symbols have the
following properties regarding the transposition of their adjacent indices:

8y=06, (3.5a)
Eiype = —Euk = Ejpu = —Egp= - (3:5b)

These rules are very useful in the manipulation of expressions involving index
notation. Their application will be met below.

3.2.2. Some Additional Applications of Index Notation

Any symbol may be used as an index; and, unless explicitly mentioned
otherwise, it is understood that the range of all indices is 3. It is especially
important to recognize that the particular repeated index used to emphasize
summation is unimportant so long as the summation rule is not invalidated.
Since the summation index may be replaced by any symbol without altering
its meaning, the summation index is called a dummy index; it always says:
“Sum on me!” An unrepeated index is known as a free index; it may be
assigned any value in its range.

The application of the index rules is easily demonstrated in the derivation
of the well-known formula for the squared magnitude of the vectorv. To
derive this relation by index notation, we shall first recall that any vector ¥
may be written as

v=1,6€, (3.62)
=v,e, +0v,e,+ V58, (3.6b)

in which
V=V e, for k=1,2,3 3.7)

are the three scalar components of v relative to the basis e,. [Cf. Appendix A,
equations (A.1) and (A.5).] Then, we form the scalar product as usual but use
the index notation in (3.6a) and recall (3.4a) and (3.2) to deduce

VOV=0,€, U, €, = U;0,€;" €= U0 by =00, =0, ;. (3.8)
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Plainly, v,v;=0v,v, 4+ v,0,+v30; =0} +03+0}. It is clear too that v,v, has
precisely the same meaning. And so does v,v,. Similarly, v==v e, is equivalent
to (3.6a).

Also with (3.2), we have 8,v,=08,,v,+ 0,0, + 0,03, hence, for i=2,
d,;0;=0,. Indeed, it is evident that in the sum on the index j nothing is
obtained until the number j on v; is the same as the number / on J;. That is,
in general,

0,0, =0, (39)

if

This result was used in (3.8) to write ;, v, =v,. Alternatively, é;,v,=v, also
may be used in (3.8). We thus see from these few easy examples that another
major advantage of index notation is that it simplifies considerably
manipulations of terms in equations.

Finally, it is easy to show with the use of (3.4b) and (3.6a) that the vector
product of two vectors u and v may be written in the compact index form

UXV=¢,,U,U,€,. (3.10)

When this formula, with the aid of (3.3), is expanded by the sums indicated,
the reader will obtain the familiar result (A.11) given in Appendix A. Notice
that in (3.10) and in the first expression in (3.8) care was exercised to avoid
repeating the same index more than twice, as this would invalidate the sum
rule and create confusion.

Additional applications of the index notation will be encountered below,
and others may be found throughout Appendix B. It is expected that the
reader is familiar with the elementary matrix operations reviewed there.

3.3. Introduction to Tensors

A tensor may be thought of as a special mathematical machine whose
inputs are vectors and whose outputs are other vectors. We may recall, for
example, that the rotator T defined in (2.9) transforms the initial position vec-
tors of particles of a rigid body into their finite displacement vectors by the
rule (2.8), namely, Tx =d; so, on the surface, it appears that the rotator may
be a tensor. However, like any machine, our tensor machine functions only in
accordance with certain operating instructions that distinguish it from other
kinds of mathematical machines. More precisely,* a tensor T is a linear

* In other books, the tensor defined by (3.11) usually is identified as a 2-tensor or a tensor of
rank 2 in order to distinguish it from other kinds of multilinear transformations leading to ten-
sors of higher rank. In this ranking of tensors, a scalar is regarded as a tensor of rank 0 and a
vector is a tensor of rank 1. However, since there will be no need in this book for tensors of
rank greater than 2, the brief though less accurate term “tensor” will be used.
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operator that transforms a given vector u into another vector Tu=w such
that the following rules hold:

Tu+v)=Tu+Tv, T(iu)=A(Tu) (3.11)

where u and v are any vectors and / is any scalar. As indicated above, tensors
will be represented by capital letters and printed in bold face type, like vec-
tors. We may recall that the rotator in (2.9) obeys the rule (2.11), which is the
combination of the rules (3.11); therefore, we see that the rotator really is a
tensor. But more about that later on. For the present, let us focus attention on
some simple operating rules that tensors must satisfy and discover some other
properties shared by all tensor quantities.

The zero tensor, denoted by 0, and the identity tensor, written as 1, are
defined by the rules

ov=0, (3.122)
lv=v, (3.12b)

which hold for a/l vectors v. In other words, the zero tensor transforms every
vector into the zero vector; and the identity tensor leaves every vector
unchanged.

There are other kinds of tensors that may transform special vectors into
the zero vector. Consider, for example, the special tensor S for which

Sv=Qxv, (3.13)

wherein  is a given vector. This rule plainly satisfies the requirements (3.11),
so this special transformation S really is a tensor. Then, in particular, we may
have Sv =0 for every vector v parallel to ©, and no others. So, unlike the rule
(3.12), S #0 because this special operator does not transform every vector v
into the zero vector.

The sum of two tensors and the scalar multiples of a tensor are defined by
the relations

(S+TW=Sv+Tv,  (AT)v=A(Tv). (3.14)

The reader may show that the transformations S + T and AT satisfy the rules
(3.11) that qualify them as tensors.

3.3.1. Components of a Tensor

The scalar components of a tensor and the matrix of a tensor will be
defined next. Afterwards, some examples that demonstrate the computation of
tensor components and the description of their related matrices will be presen-
ted.
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Index notation is particularly useful in representing the components of

tensor quantities. Let e, be an orthonormal basis. The set of nine numbers
defined by the rule

T,=e, Te (3.15)

are called the (Cartesian) components of the tensor T with respect to the basis
¢;. These components may be written in a square matrix

T,, T, Ty
[T]l=T= [Tij] =Ty Tn Txul|, (3.16)
Ty, T3, T3

which is called the matrix of the tensor T with respect to the basis e;.

Let us apply (3.15) in a few preliminary examples to derive the com-
ponents of some tensors. For our first example, we may consider the zero ten-
sor in (3.12). Putting v=e; in (3.12a) and using the definition (3.15), we see
that e;-Oe,=e," 0 =0 for every pair of directions e,; that is, all nine of the
components of the zero tensor are zero in every basis, which is to be expected.

The rule (3.12b) yields a more interesting result. In a similar manner, we
find with the use of (3.4a)

e-le=e;e=45,. (3.17)

7 L 14

Thus, the nine components of the identity tensor are the same with respect to
every orthonormal basis e;; and they are identified by the Kronecker delta
symbol (3.2) whose corresponding matrix is the usual identity matrix I:

[(1]=1=[d,]= (3.18)

[ R
(= =]
- o

For a final introductory example, let us determine the components of the
tensor 8 in (3.13). Writing v = e; and using (3.15), (3.4b), and (3.7), we derive

e;-Se;=e,-Qxe,=C-¢xe,=¢; 0 e, =¢£;2,;
that is, with (3.3),

Si= —& 2. (3.19)

i
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Thus, more explicitly, the matrix of the tensor S with respect to the basis e; is

0 -9, @
[S]1=[S;]=| £, 0 —-9|. (3.20)
-Q, Q 0

The components of other tensors and their matrices may be found in a similar
manner.

3.3.2. The Tensor Product

Let us recall the representation (3.6) for vectors and the manner in which
the scalar components with respect to the basis e, are defined in (3.7). In view
of (3.15), it seems natural that we should seek a similar kind of representation
for a tensor in terms of its components and the basis vectors used to define
them. As a first step toward accomplishing this, we shall introduce in this sec-
tion the tensor product of a pair of vectors. In addition, the tensor product
will provide another easy operational tool to use with our tensor machine.

If a and b are given vectors, their tensor product a®b may be defined by
the requirement that

(a®@b)e=a(b-c) (3.21)

hold for all vectors ¢. It is easy to verify that T=a®b obeys (3.11), which
qualifies it as a tensor. (See Problem 3.10.) The tensor product is not com-
mutative, because a(b-¢)+b(a-c); hence,

a®b#b®a. (3.22)
Moreover, (3.21) implies that the tensor product is associative with

respect to multiplication by a scalar A and distributive with respect to addition
of vectors b and d:

AMa®b)=(la)®b=a® (ib),

3.23
a®@(b+d)=a®@b+a®d, (b+d)@a=b®a+d®a. (3.23)

Thus, with respect to the basis e, these properties reveal that in terms of the
vector components, the tensor product may be written

a®b=ae;Q@b.e, = (a;b,)(e;De,), (3.24)

wherein (3.6a) has been recalled. Moreover, it is easy to see by the application
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of (3.15) in (3.24) and use of (3.7) that a;b, are the components of the tensor
a®b; for,

e (a®@b)e,=e¢;-a(b-e,)=a;b,
For the orthonormal basis e,, (3.21) and (3.4a) yield
(e;®@e;) e, =ele; - e)=0,e,. (3.25)

This rule often is useful in derivations involving tensor components. We
notice, for example, that it yields the relation

e, (e;®e)e,=(e, e)(e e)=0,0;.

Example 3.1. The rule (3.21) may be used to express the vector triple
product in a tensorial form that is useful in applications. The result is derived
from the expansion rule for the triple product of vectors u, v, and w given in
the Appendix A:

ux(vxw)=(u-wjv—(u-v)w [cf. (A.14)].

With the use of (3.12b) and (3.21), it is easily seen that this identity may
be expressed in the tensorial form

ux(vxw)=[(u-w)l —w®ulv. (3.26)

Hence, the triple product may be viewed as the transformation of a vector v in
accordance with the rule

Tv= —ux(wxyv) with T=(u-w)l—-w®u. (3.27)

3.3.3. The Tensor Representation Theorem

The tensor product a@b of two vectors in (3.24) is represented in terms
of its nine components a;b, and nine tensor products e,®e, of the
corresponding basis vectors. This relation suggests that every tensor T may
have a similar representation. We shall prove this conjecture in the tensor
representation theorem below. Also, it will be shown how this representation
may be used in manipulation of tensor equations and to express such
equations in their component forms with respect to some chosen basis.

Since e, is a basis, (3.25) implies that the tensor products e;®e; form a
set of nine linearly independent tensor products such that

mye,®e;=0 (3.28)

may hold if and only if all nine scalars m; = 0. Now, let us consider the set of
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ten tensors T and e, ®e;. Then there exist ten scalars A and A
such that

;» not all zero,

AT+ 2e,8e,=0.

In particular, 4 # 0; otherwise, since all of the A, are not zero, the foregoing
equation would contradict (3.28) for the linear independence of the nine ten-
sor products. Hence, upon writing T;= —4,/4, we find the important result

T-T,e, (3.29)

in which, by definition,
e;=e¢,Qe;. (3.30)

The set of nine quantities e is called a fensor basis associated with the
orthonormal basis e;. It is easy to show that T, are the components of T with
respect to e,. Moreover, the representation (3.29) is unique. For, if we suppose
that there may be two such representations with respect to the same tensor
basis, then their difference would have the form of (3.28). But the linear
independence of the tensor basis would then imply that the two sets of com-
ponents are, in fact, identical. We thus obtain the

Tensor Representation Theorem. With respect to the orthonormal basis e;,
every tensor T has the unique representation (3.29) in terms of its components
and the linearly independent set of basis tensors (3.30) associated withe,.

The representation rule (3.29) may now be used to express any tensor in
terms of its components in a manner that is similar to that we have grown
accustomed to using for vectors. The identity tensor, for example, with com-
ponents (3.17) in every orthonormal basis, may now be written as

I=d.e,=¢;=¢,Qe, (3.31)

Similarly, the tensor whose components are given in (3.19) may be expressed
as
S= —gyu L2 ey (3.32)

With the aid of these representations, expansion of tensor relations or
other manipulations may be carried out in a straightforward manner. For
example, the products of these tensors with a given vector v may be readily
derived:

Iv=(e,@ev=re. (e, v)=v,e, =,

Sv= —¢, Qie;v=c,02.ee;, v)=¢,;2,v,e, =L X,
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wherein (3.21), (3.7), the permutation rule (3.3), and (3.10) have been
recalled. We recognize, of course, that these are the same as (3.12b) and
(3.13).

More importantly, it is readily seen from (3.25) and (3.29) that for any
tensor T,

Te, =T (e;®e;) e, =T,6,.e,=Tye,. (3.33)
Aud further, it is useful to note that for any vector u, we may write
w=Tu=T,e,u=T,.ele, u)=T,u,e,. (3.34)
Hence, the components of the transformed vector are given by
wi =Ty, u,, (3.35)

which may be written as the matrix product w=Tu. An easy example is
provided by (3.9), from which it is seen that v=Iv is the matrix form of
(3.12b).

3.34. Other Tensor Operations and Rules

Some additional tensor operations will be assembled here, and some
principles governing their applications will be derived. Many of the rules are
similar to those for matrices, and this will be pointed out along the way. The
following topics will discuss the product of tensors, the trace and transpose
operations, symmetric and skew tensors, the determinant and the inverse of a
tensor, and orthogonal tensors. We shall start with the multiplication of ten-
sOrs.

3.3.4.1. The Product of Tensors

The product P=ST of two tensors S and T is defined by the condition
that

(ST)v =S(Tv) (3.36)

hold for all vectors v. It is easily seen that (3.36) satisfies the primary rules
(3.11), and that the components of the product tensor with respect to an
orthonormal basis e, are given by the product of the matrices of S and T:

P,=S,T,, [P1=[S][T] or P=ST (337)

Therefore, the usual rules for matrix multiplication apply to tensors. It is clear
that the product of two tensors generally is not commutative: ST #TS. (See
Problem 3.11.)
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3.3.4.2. The Trace Operation

The trace of a tensor is an operation defined by the rules

tr(S+T)=trS+1trT, (3.38a)
tr(AS)=41trS, (3.38b)
tr(a®b)=a-b, (3.38¢)

in which 1 is a scalar, T and S are tensors, and a and b are vectors. It follows
easily from (3.38c) that

tr(la®b)=tr(a®@ib)=Atr(a®b). (3.39)

Introducing the representation of T in terms of its Cartesian components
in (3.29), and applying the rules (3.38) and (3.4a), we obtain

tr(Tyep) =Ty tr ey =Tye, e, =T,,0,,.
That is,
tr T="T,, (3.40)

which is the same as the trace of the matrix of T. We recall specifically for the
identity tensor (3.31) that tr 1 =4§,, = 3; and it is evident that the usual rules
for the trace of a square matrix hold for tensors. For example, the trace of the
product of two tensors satisfies the commutative rule

tr(ST) = tr(TS). (3.41)

3.3.4.3. The Transpose of a Tensor

The transformation T7 defined by the requirement that
Tu-v=u-Tv (3.42)

hold for every pair of vectors u, v is readily seen to obey the rules (3.11)
qualifying it as a tensor. (See Problem 3.12.) This tensor T7 is called the trans-
pose of the tensor T. The transposition operation satisfies the rules

(S+T) =S"+T7, (AS)"=AS7,
, (343)
(a®b) ' =b®a.
To confirm the later, let T=a®b in (3.42) and apply (3.21) to deduce

(a®b) u-v=u-(a®@b)v=(u-a)b-v)=(b®a)u-v.
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Since this identity must hold for every pair of vectors u, v, we conclude the
last relation in (3.43).

The components of T” are easily obtained from (3.42). Let u=e, and
v=e;, and recall (3.15) to get

(T7),=e, TTe,=¢, Te,= T}. (3.44)

This means that the element in the ith row and jth column of the matrix of
the tensor T is equal to the element in the jth row and ith column of the
matrix T of the tensor T. Hence, 77 denotes the usual transpose of the matrix
T, and we write its components as T = (77);,. In fact, all of the familiar rules
of transposition of matrices apply to tensors. Specifically,

trT =tr T; (3.45)

and the transpose of the product of two tensors S and T is equal to the rever-
sed product of their transposed tensors:

(ST)" =T7S”. (3.46)

3.3.4.4. Symmetric and Antisymmetric Tensors

A tensor is said to be symmetric if T =T. This implies that the com-
ponents of T satisfy 7;=T,. Also, a tensor is said to be skew or antisym-
metric if TT= —T. This means that the components of T must satisfy
T;= —T;, and hence all the diagonal elements of its matrix T are zero.

The identity tensor in (3.18), or (3.31), is an obvious example of a sym-
metric tensor; we recall that its components obey the rule (3.5a). The matrix
in (3.20) shows at once that the tensor in (3.19), or (3.32), is an antisymmetric
tensor. It may be seen with the aid of (3.5b) that S; = —S,. It should be clear
that the rules appropriate to symmetric and skew matrices hold for tensors.

Notice that the tensors defined by

Ts=4{T+T7), T,=4T-T7, (3.47)

are symmetric and antisymmetric, respectively; they are known as the sym-
metric and antisymmetric parts of T. Hence, every tensor may be decomposed
uniquely into the sum of its symmetric and skew parts; for,

T=Ts+T,. (3.48)

(See Problem B.7.) The component equations corresponding to (3.47) are
written as

Ts= T e T, =Trpex; (3.49)
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wherein, by definition,
T =T+ Ty), (3.50a)
T =5(Tu—Ty). (3.50b)

This decomposition is often useful in physical applications because the
symmetric and antisymmetric parts of tensors have important and distinct
interpretations. In linear elasticity theory, for example, the deformation of a
body is described by a symmetric tensor called the strain tensor, but this is
accompanied by a local rigid body rotation which is described by an antisym-
metric tensor named the rotation tensor. The sum of these tensors is the
gradient of the relative displacement vector of neighboring material points,
and it characterizes the kinematics of the entire local motion of a deformable
solid body. We shali prove later in this chapter that the symmetric and skew
parts of the rotator determine the angle and the axis of rotation, respectively,
of a rigid body rotation.

The decomposition (3.48) is useful also because symmetric and antisym-
metric tensors have special algebraic properties that may be separated in this
way. It is easily shown with the use of (3.33) that any tensor satisfies the
relations

e, xTe;=T7¢;xe;, and e, Te,=T'e; e, (3.51)

[See (3.42) also.] Hence, it follows readily from (3.47) that
e, xTge;=0 and e, T,e=0. (3.52)
We note that the latter is simply the trivial identity tr T ,=0. Moreover, it

may be seen from the foregoing equations and (3.48) that (3.51) is equivalent
to

e;xTe,= —Te;xe;=¢,xT e (3.53)
and

e, Te,=¢, Tse;=tr Tg=trT. (3.54)

Another useful application will be illustrated next.

Example 3.2. Use of (3.47) and (3.42) yields the following symmetric and
skew parts of the tensor T in (3.27):

Tg=(u-wil—i{(u@w+w®u), (3.55a)
T,={{u@w—wR®u). (3.55b)
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It is seen from these relations that tr T ,=0, which always is the case for a
skew tensor. Thus, with the use of (3.48) and (3.38), we find

trT=trTg=3(u-w)—u-w=2(u"w).
In the special case when u=w is a unit vector, it is seen that T ,=0 and
T=Tg=1—-u®nu, trfu@u)=u-u=1, trTg=2. (3.56)
Hence, when u is a unit vector, (3.27) yields the special formula
Tv= —ux(uxv)=(1—u@u)v. O (3.57)

The Vector of a Skew Tensor. The relation (3.19) shows that only skew
tensors may have the property (3.13). In fact, since a skew tensor has three
nontrivial independent components in three-dimensional space, (3.13) shows
that it is always possible to relate to each skew tensor S a vector £ whose
scalar components are related to those of S in accordance with (3.20), namely,

Q=255+ S5:e,+5,€3= —S,;¢, — 536, — Sppes. (3.58)

Indeed, it is easy to show that (3.13) always may be solved uniquely for
Q in terms of S. We set v=e, in (3.13). Then, we form the sum of vector
products as indicated below, use the expansion rule (A.14) for the triple
product, and recall (3.4a), (3.6),, and (3.7) to derive

e;xSe;=e; x (2 xe;)=(e; ¢,)Q2— (e, N)e;=2Q.

The component form of the left-hand side of this equation is derived by
application of (3.33) and (3.4b):

e;xSe;=e;xS5,e,=¢6,5,€=—¢,;S,€.
We thus obtain the unique vector associated with the given skew tensor S:
Q=je,xSe; (3.59a)
— —lep Sy (3.59b)

This important vector is known as the vector of the skew tensor.

Bearing in mind that S is skew so that S, = —S;, when (3.59) is written
out we shall obtain (3.58). Hence, to each skew tensor S there corresponds a
unique vector € given by (3.58) or (3.59) such that for every vector v, we have

Svy=Qxv. (3.60)

Thus, a skew tensor transforms every vector v into another vector Sv which is
perpendicular to v and to the vector Q of the skew tensor. And, conversely,
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for each vector product  xv of a given vector € with an arbitrary vector v
there exists a unique tensor

S= —£,2e,. (3.61)

such that (3.60) holds. The equations (3.13) and (3.32) recalled above have
been rewritten as (3.60) and (3.61) for future convenience.

Example 3.3. Find the vector Q of the antisymmetric tensor defined in
(3.55b).

Solution. The use of (3.24), (3.25), and (3.29) shows tnat the components
of T, in (3.55) are given by

(Ta)y=e, T €;=3u,w;—w,u,).
Hence, substitution of this relation into (3.59) and use of (3.5b) yields
Q=1le,xT e,= —ie,,(u,w,—w,u;) e, = — e W e
that is, with (3.10), we find that

Q= —luxw

is the vector of the skew tensor T, = (u@w—w®u)/2.
As further illustration, let us observe that for an arbitrary vector v,
application of (3.60) and (A.14) yields

T,v=Qxv=—I(uxw)xv=4[(w-v)u— (u-v)w];
and we recover the original relation in (3.55b):

T,v={(u@w—w@u)v.

3.3.4.5. The Determinant and the Inverse of a Tensor

The determinant det T of a tensor T is defined as the determinant of its
Cartesian component matrix:

det T=det[T]=det T. (3.62)

The elementary rules for determinants are reviewed in Appendix B. In par-
ticular, the rule {(B.17) holds for tensors:

det(ST) = (det S)(det T). (3.63)

If det T+#0, the tensor is said to be nonsingular, hence invertible,
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otherwise, it is called singular. When T is invertible, there exists a unique ten-
sor T~!, called the inverse of T, for which

TT'=T 'T=1 (3.64)

holds. The components of T~! are the corresponding elements of the inverse
of the matrix of T, namely, T~ !'=[T] "

Similarly, other rules appropriate to invertible matrices apply also to ten-
sors. For example, if S and T are invertible tensors, their product is invertible
also, and

(ST)"'=T-18"1, (3.65)

In addition, the transpose of a nonsingular tensor is invertible, hence

(T-HT=(TT)" 1. (3.66)

3.3.4.6. Orthogonal Tensors

Finally, an orthogonal tensor Q is a nonsingular tensor having the
property

Q '=Q" (3.67)
Hence, by (3.64) and (3.67), Q is an orthogonal tensor if and only if
QQ"=Q’Q=1 (3.68)

Of course, det Q= +1. When det Q= +1, Q is called proper orthogonal,
otherwise, it is called improper orthogonal. Evidently, the rules for orthogonal
matrices apply immediately to orthogonal tensors.

This concludes the introduction to tensors. Transformation rules that
relate the components of a tensor with respect to different bases will be
introduced further on; and other tensor properties will be discussed in connec-
tion with the moment of inertia tensor, which will play a fundamental role in
our future study of the dynamics of rigid body motions. It may be noted, in
addition, that stress, strain, and rate of strain are other examples of tensor
quantities that the reader may expect to encounter in the study of solid and
fluid mechanics, or more generally, in continuum mechanics. We shall find the
foregoing rules useful in the description of finite rigid body rotations, which
we shall begin to study next.
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3.4. The Rotator

We have learned that the rotator (2.9) is a tensor that transforms the
initial position vector x of a particle P of a rigid body into its finite dis-
placement vector d(P) due to a rotation through an angle 8 in a right-hand
sense about a fixed unit direction a:

d(P)=Tx=sinfaxx+(1—cosfax(axx) [cf. (2.7)].

We are going to show that the vector operator (2.9) may now be replaced by
a more useful tensor operator.

Let S be the skew tensor whose vector Q = a; and, in (3.57), in write the
unit vector u=a. Then application of (3.57) and (3.60) in (2.7) yields

d=Tx=[Ssinf—(1—cosB)(1-a®a)]x. (3.69)

This identity must hold for all vectors x. It thus follows that the rotator has
the unique representation

T=Ssin8+ (1 —cosf)a®a—1) (3.70)

in terms of its symmetric and antisymmetric parts given by (3.47):

Tg= (1 —cosf)a®a—1), (3.71a)
T,=Ssin 6, (3.71b)

and wherein, by (3.61),
S=S,e,= —e o€, (3.72)

Let the reader show that (3.69) also may be expressed in terms of § and S by
the relation

T =S sin 8+ S*(1 —cos ),

in which 8?=SS =a® a — 1. Thus notice that the square of a skew tensor is
symmetric.

If values are assigned to 6 and a, the rotator may be found from (3.70)
and expressed in terms of its components with respect to any assigned
reference frame i = {0; e, }. It is easily shown that (3.15) and (3.70) yield the
components

T;= —¢gzua,sin 0+ (1 —cos 0)(a,a;,—6,) (3.73)

with respect to frame y. The end result may be written as the matrix (3.16)
and the matrix product d = Tx may then be used to find in ¢ the displacement
vector (2.7). The converse problem is more interesting.
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Suppose that the rotator is known with respect to a frame . Then (3.70)
may be used to find both the angle and the axis of rotation in the terms of the
components of T in . Since tr S=0, (3.70) or (3.71a) yields

tr T=tr Tg=2(cos 0 —1). (3.74)
[See (3.54) also.] Hence, the angle of rotation is given by
cos0=1+1trT. (3.75)

The angle of rotation of the body clearly is independent of the reference frame
that eventually may be used to determine tr T in a particular case. Therefore,
tr T must have the same value in every reference frame. This important fact
will be proved in another way in our later study of the transformation proper-
ties of tensors.

In view of (3.53), it is seen that the axial vector of the skew tensor may be
found by application of (3.59a) and (3.71b). First, we have

e;xTe,=e;xT  e;=sin 0 e; x Se, = 2a sin 6.

We may ignore a trivial rotation through an angle 6 =2nn, n=0, 1, 2,...; and
we may assume momentarily that 8+ +n. It then follows that the axis of
rotation is determined by

a=7}csce;xTe;. (3.76)

The case 0 = +7 must be treated separately. We use (3.70) or (3.71) to
write
T=Ts=2(a®a—1); (3.77a)
hence,
a®@a=1+1T. (3.77b)

The diagonal elements of the corresponding matrices of (3.77b) determine the
squares of each of the components of a, which also must satisfy a-a=1; and
the nondiagonal elements may then be used to fix the signs of the components
of a. Of course, either +a may be used as the solution. In any event, @ may
be found easily for the special case when 0 = +n.
The reader may show that the component forms of (3.75) and (3.76) are
given by
cos 0=1+1T,, (3.78a)
and
a= —4cscOe, Ty (3.78b)

and (3.77b) yields
aa;=0,+3T, for 6= +nm. (3.79)
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It is useful to observe that when (3.78b) is expanded, the component form of
(3.76) may be written as

a= —CSC 0[e1 T[23]+e2 T[31]+03T[12]], (3,80)

wherein we recall (3.50b). For example, T'(3;= (T2 — T3,)/2.

Equations (3.75) and (3.76), or (3.80), determine € and @ to within their
signs. However, a right-hand rotation through an angle § = —8, or equivalen-
tly, 2z — 6, about an axis @ = —a clearly is equivalent to a right-hand rotation
through an angle 6 about the axis a. In the former case, we visualize in
Fig. 3.1 that the rotation through a negative angle about a negative direction
is just the mirror reflection of the latter; hence, the pair {—6, —a} is called
the image rotation of the pair {6, a}. Since these describe equivalent rotations,
it is clear that (3.75) and (3.76), hence (3.80), determine the angle and axis of
rotation uniquely. Moreover, it is plain that every rotational displacement
may be accomplished by a rotation through an angle which is not greater
than a straight angle; so, no generality is sacrificed by our requiring hen-
ceforward that 0<O< .

Example 3.4. Find the matrix of the rotator for the rotation of the
satellite tracking antenna described in Example 2.1.

Solution. The angle and axis of rotation in @ = {F;I,} are given by

cos 0 =4/5, (3.81a)
sin 6 = 3/5, (3.81b)
a=4(I+J). (3.81¢)

Hence, the matrix of the components of T may be obtained by substitution of
these values into (3.73). This exercise is left for the reader. We shall consider

By {3.70), T=T(6.8) = T(-6,-0) 2 T(2n- 6,0 = T{0.a).

Figure 3.1. An equivalent image rotation.
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an alternative solution that illustrates some of the tensor relations studied
earlier.
Substitution of (3.81a) and (3.81b) into (3.70) provides

T=338+e®a—1). (3.82)

We note that {e,} = {I,} so that e;=1,=1,®1,. Thus, recalling (3.24), we
find with (3.81¢)

a®u=aiajetj=%(lll +1,+ 1 +1y);
(3.31) becomes
1=eu =1, +1+1;

and (3.72) yields
/2
S= _aijkakeijo (T3 =I5 + 15, —1y,).

Then assembling these three expressions in (3.82) yields the result needed. We
thus obtain
3 f

2 1
(N3 =Ty 4Ty~ ) =5 (o Loy + 2055 — 1, — 1),

T= TkIIkI = _1'0_

Hence, the matrix of T in frame @ may be read from this equation as follows:

~1 1 3.2

T=[Tk,]=% 1 -1 -3/2 | (3.83)
-3/2 3,2 -2

Conversely, let us suppose that T is given by (3.83); and let us verify the
original data by application of (3.75) and (3.80). With tr T == —4/10, we have

cosO=1+itrT=1-1=4

Of course, sin 8 = 3/5; and with (3.83) in (3.80), we find

a= —g-lio[l,(—:-s V2-3/2)+1,(=3 \/5-3\/5)]:=£(I+J).

2

It is seen that the angle and axis of rotation agree with the original conditions
in (3.81). O

Example 3.5. An alternative design of the aircraft door panel mechanism
illustrated in Problem 2.6 requires that the curved link must execute a finite
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rotation about a fixed line so that the rotator in frame @ = {0; i, } is given by
the matrix

1 1 0
=] o -1 —1]. (3.84)
-1 0 -1

The initial position of the guide pin P in the revised design is x=3i—
5j+ 4k ft from O. Find the angle and axis of the rotation, and determine the
displacement of P. What is the terminal location of P in @?

Solution. The angle of rotation is obtained by (3.75). With (3.84), we find
tr T= —3; hence, cos 0 = —1/2, and 6= 120° or 240°. However, as mentioned
above, nothing is lost by our always choosing the smaller angle; so we shall
fix 8§ =120°. Then use of (3.84) and sin 9=\/§/2 in (3.80) yields the axis of
rotation:

a=%(i+j—k). (3.85)

7

Let the reader show that for § = 2w — 0 = 240°, sin = ~\/§/2 and the sign of
o is reversed, as described earlier.

The displacement of P may be easily computed from the matrix of (2.8):
d= Tx. For P at x =3i— 5j+ 4k, we have

1 1 0 3 —8
d=[T]x]=| 0 —1 —1] |=5]=1]1
1 0 -1 4 ~7

Thus, d(P)= —8i+j— 7k ft in frame @.
The terminal position of P in @ is given by . We recall d =% —x, and
thereby find

%(P)=d+x= —5i—4j— 3k ft. O

In these examples the rotator has been assigned without concern for how
it may have been obtained without first having the angle and the axis of
rotation. So it is natural to wonder, how may the rotator be derived from
other information provided in a problem of the kind illustrated above? If two
configurations of the body are known in an assigned frame, we need to learn
how we may find a suitable rotator T that will take the body from one into
the other. Afterwards, we may determine the equivalent angle and axis of
rotation required to produce the displacement. Of course, in general, a trans-
lation of the body also may be necessary. We shall begin to unravel the
answer to this question in the next section.
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3.5. The Rotation Tensor

The rotator will now be linked in a simple way to another tensor called
the rotation tensor, which is more useful in certain applications, particularly
those involving the composition of several rotations about a point, for exam-
ple. Equations similar to (3.75) and (3.76) will be derived for the rotation ten-
sor; these will determine the angle and the axis of rotation when the rotation
tensor is known. And it will be proved that the rotation tensor is an
orthogonal tensor. As consequence of this fact, we shall learn eventually that
the rotation tensor has a simple geometrical interpretation that will enable us
to determine the form of the rotator when only the initial and final orien-
tations of the body are assigned.

To begin, we observe from (2.8) that the terminal position vector of a
particle of a rigid body in a rotation about a fixed line may be written as

% =Rx, (3.86)
wherein, by definition,
R=T+1 (3.87)

The tensor R is named the rotation tensor.

The properties of R are related to those of T by (3.87). We recall from
equation (2.10) that Ta = 0 means that points on the axis of rotation suffer no
displacement. Application of this result in (3.87) shows that the rotation tensor
preserves the axis of rotation; that is,

Ra=a. (3.88)
Moreover, (3.87) also yields tr R =tr T + 3; hence, with (3.74), we obtain

trR=1+2cos 6. (3.89)

Thus, the properties (3.88) and (3.89) together with the constraint a-a=1
determine the axis @ and the angle 6 of the rotation when R is prescribed. As
before, we may limit 8e [0, r] with no loss of generality. However, since
R(—a)= —a holds also, (3.88) determines @ only to within its sign. This
annoying ambiguity may be easily eliminated by application of (3.80). First,
we note that Rg=Tg+1 and R, =T, follow from (3.47) and (3.87). Then
(3.80) yields

a= —csc 0[e  Riy;;+€,Rp37+€3Rp 5] (3.90)

Thus, (3.89) and (3.90) determine # and @ uniquely in terms of the symmetric
and skew parts of R. The exceptional case § =n must be treated separately as
described in connection with (3.77b) upon substitution of (3.87).
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The rotation tensor has important additional properties that are not
shared by the rotator. These are revealed by use of (3.86). Because each of the
particles of a rigid body, before and after its rotation, is at its same distance
from the point O on the axis of rotation, (3.86) and use of (3.42) show that

x'x=%"%=Rx-Rx=x-R7Rx,
that is,

x-(RR—-1)x=0.

This equation must hold of all particles of the body, ie., for all x; hence,
(RT—1)x =0 must hold for all x. But the only tensor that transforms every
vector into the zero vector is the zero tensor; therefore, R must satisfy
R7R = 1. It follows by (3.68) that R is an orthogonal tensor with det R = +1.

Because a trivial rotation R =1 must be admissible for every rigid body,
only det R= +1 is allowed. Otherwise, we could choose R = —1, which is an
improper orthogonal tensor. However, in this instance, (3.88) fails to hold,
and (3.89) implies that cos # = —2, which is impossible. Hence, improper
orthogonal tensors do not characterize rigid body rotations. Consequently,
every rigid body rotation tensor R is a proper orthogonal tensor that obeys
the rules

RR"=R'R=1, detR=1. (391)
Example 3.6. Show that the tensor R = R;e,; having the matrix

1 0 0
R=]0 cos@® —sind (3.92)
0 sinf cosf

with respect to the orthonormal basis e, is a proper orthogonal tensor. Deter-
mine the axis of the rotation it represents.

Solution. It is seen at once that det R=cos? 6+ sin’ #= 1; and it is easily
shown that

1 0 0
R'=]10 cosf sinf| =R"
0 —sinf cosf
Therefore, R is a proper orthogonal tensor. Notice further that tr R=

1+ 2 cos 6, which agrees with (3.89).
The axis of rotation is found by (3.90); we obtain a=e,. Thus, (3.92)
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describes a right-hand rotation through the angle 8 about the ¢, direction. Let
the reader show that the matrix in Example B.3 in Appendix B is a proper
rotation around the e, axis; use (3.87) to derive the matrix R for a rotation
about the e, direction; and compare the forms of the three matrices men-
tioned. In addition, apply (3.88) to find the axis of the rotation (3.92).

3.6. Change of Basis and Transformation Laws

A vector v will have different scalar components when referred to dif-
ferent bases. But the vector itself is unchanged; it remains the same
geometrical object regardless of the basis used to represent it. Thus, for the
bases e; and e relative to which v has the respective components v; and v;, we
may write

v=ue, =€} (3.93)

The same thing applies to tensors. A tensor will have different com-
ponents when referred to different bases, but the tensor itself is unchanged. A
tensor is an invariant entity. Thus, a tensor T having components T; and T,
with respect to the corresponding bases e; and e;, may be written as

T=T,e,=Tieh (3.94)

The fundamental rules that relate the different components of vectors and
tensors are called transformation laws. We shall see in later chapters that these
laws play an important role in rigid body dynamics. To derive the transfor-
mation laws, we shall need to introduce relations connecting the different
bases.

3.6.1. A Change of Basis

Let {e,} and {e,} be two sets of orthonormal basis vectors so that

=9, (3.95a)
and

e, e/ =3,. (3.95b)

We recall that each of these six sets of conditions specifies the unit magnitudes
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and mutual orthogonality of the basis vectors in each set. In addition, we may
form the dot product

e;-e;=cose/, e =4, (3.96)

in which (e}, ¢;> denotes the angle between the unit vector e; and the unit
vector e;. Hence, the 4 in (3.96) define the nine direction cosines of the three
vectors {e/} relative to the basis set {e,}. It is important to notice that their
definition requires that we write the first index of A; as the prime label. Of
course, it is certainly true that

e/ -e,=cos{e;, e )=cose;, e/ > =¢e; e, (3.97)

however, we caution that 4, # A;. For example, it is clear that cos{e}, e,) =
cos{e,, e;>; but 4,,# A,,, for plainly,

A =cos(e}, e, ) #cos{er, e ) =A,,.

Thus, we shall agree in (3.96) that A, always is read as the cosine of the angle
between €] and e;. Moreover, let us agree to extend the index rules to terms
enclosed in the cuneiform brackets.

We recall from (3.6) and (3.7) that every vector v may be written in the
form

v=0,8,=(v-¢,)¢, (3.98)

with respect to the basis &,. In particular, we may identify v=e; and &,=e,,
and apply (3.96) to obtain

e;=(e;-e;)e,=A,e,. (3.99)
And similarly, reversing the roles of the primed and unprimed sets and using
(3.97) while retaining the definition (3.96), we have also

e;=(e;e)e =A,e. (3.100)
Either of the transformation rules (3.99) and (3.100) is called a change of
basis.

The same thing may be seen in more geometrical terms by our recalling
that any unit vector n, say, may be expressed in terms of the three cosines of
the direction angles a; that it makes with the familiar orthonormal basis direc-
tions i, at a point Q, as shown in Fig. 3.2a. Namely, n=cos o, i,. If we write
cos{n, i;» for the cosine of the angle «; between n and the i; direction and
agree, as mentioned above, to extend the summation rule to terms in the
cunciform brackets, then n may be written more conveniently as n=
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(a) (b)

Figure 3.2. Direction angles of a unit vector n, and a change of basis.

cos{m,i,>i,, Now let {i,} be another orthonormal basis, as shown in
Fig. 3.2b. Then, for example, with n=1i}, we shall have i}=cosi},i,) i,
Similar equations may be written for i} and i5. Thus, in general, we shall have
ij=cos(ij, i;,)>i,= A,i,, which, with (3.96), is the same as (3.99) applied to the
usual Cartesian bases.

Naturally, the change of basis (3.99) induces a change of tensor product
basis so that, for example,

e;=e;@e =Ae, @A e,=A, A,(e,®e).

A similar relation is induced by use of (3.100). We thus obtain for a change of
tensor product basis

e;j=A‘~kAj[ek[, ek1=A,-kAﬂe:-j. (3101)

3.6.1.1. The Basis Transformation Matrix

The matrix A= [A4,,]=[cos{e,, e, )] of direction cosines for the change
of basis (3.99) or (3.100) is named the basis transformation matrix. To dis-
cover its fundamental properties, we use the change of bases in (3.99) and
(3.100) to form the scalar products in (3.95). For example, with (3.99) and
(3.95), we derive

dp=e-e,=A,e A e, =A;Ae-e,=A;A4,06;,
that is,
AgAy=68, or AAT=I. (3.102a)
And, similarly, with (3.100), we find
A Ay,=6, or ATA=I (3.102b)

The properties (3.102) show that 4 is an orthogonal matrix. Of course,
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det A= +1. If the bases e and e, are of the same hand, their mutual direc-
tions can be made to coincide so that 4 =I; hence, det 4 = +1. If the bases
have opposite hand so that one is right-handed, the other left-handed, then
one direction e,, say, will be oppositely directed to its partner e; when the
other two pairs of vectors are mutually aligned, hence det A = —1. We have
assumed in this text that all frames are right-handed; therefore, for every
change of basis, we shall have det 4 = +1. Hence, the transformation matrix
A is a proper orthogonal matrix.

Another interesting result may be obtained by forming from (3.99) the
tensor product

Q=¢/®e;=A,¢,Qe,=A4,¢,Re, (3.103a)
or from (3.100)

Q=¢,Qe, =€, @A, e/=A4]€; Qe (3.103b)
Hence, Q is an orthogonal tensor whose matrix with respect to either basis is
the transpose of 4: Q = Q' = A”. Indeed, the orthogonality property of Q may

be demonstrated independently of the foregoing properties of 4. It is easily
shown from the product rule (3.36) that the tensor product obeys the rule

(a®@b)c®d)=(b-c}a®d). (3.104)

The proof is left for the student in Problem 3.13. Thus, with the help of
(3.104), and recalling (3.43), (3.95a), and (3.31), we derive from (3.103)

QQ7=(e;®c¢;)(e,®e,)=(¢;-¢,)(¢;Re,)=¢;Re/=1.

The reader may show similarly that Q7Q = 1. Therefore, in accordance with
(3.68), the tensor Q defined by (3.103a), with respect to the two sets of
orthonormal bases indicated, is an orthogonal tensor.

Final, let us consider the product

Qe, = (e’p®ep) €= 5pke;z =e.
We thus learn that the tensor Q defined by (3.103) is the orthogonal tensor

that transforms the basis vector e, into the corresponding basis vector e} ; and
hence the change of basis (3.99) and (3.100) may be written as

e,=Qe,=A,e, (3.105a)
e,=Q7e;=Aye;. (3.105b)

The tensor Q is named the basis transformation tensor. Its matrix with respect
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to either of the orthonormal bases in (3.103) is the transpose of the basis
transformation matrix defined in (3.96), hence

Q=A", namely, Q; =A}=A,=cose;, e (3.106)

may be read as the array of nine direction cosines of the triple e; relative to
the basis e, the first index of Q;, being the unprimed label.

3.6.2. Transformation Laws for Vectors and Tensors

The rules that relate the different components of vectors and tensors may
now be readily derived by application of the change of basis to the represen-
tation equations (3.93) and (3.94). We shall begin with the vector equation
(3.93) and by substitution of (3.100) obtain

V=0;A€;=0xe.
Since e} is a basis, this equality implies that
vp=Ayv, or v'=Av=Q7p, (3.107a)

where the second expression is the matrix form of the first and (3.106) is
recalled. Similarly, the inverse of this formula may be found by use of (3.99) in
(3.93); or it may be gotten directly from (3.107a) by use of (3.102). In any
event, we find

v,;=A,v, or v=ATv'=0Qv. (3.107b)

The rule in either of the alternative forms of (3.107) is known as the (Car-
tesian) vector component transformation law.

A similar procedure that uses (3.101) in (3.94) yiclds the following
variants of the (Cartesian) tensor component transformation law expressed in
both index and matrix form:

T,=AyA; T, or T'=ATA"=Q'TQ; (3.108a)
Tu=AxA;T; or T=A"TA=QTQ". (3.108b)

Herein we remember (3.106). Notice that (3.108b) also may be derived from
(3.108a) by use of the orthogonality rules (3.102) for A.

A change of basis in the plane is easy to visualize. An example that
illustrates a plane change of basis and the use of the vector transformation law
will be given next. An application of the tensor transformation law will be
demonstrated in the following subsection.

Example 3.7. Let v=3i, +4i, in the familiar i, basis. Find the com-
ponents of v referred to a basis i} obtained by a counterclockwise rotation of
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the first set through 45° about their mutual axis iy =i3 perpendicular to the
plane, as shown in Fig. 3.3.

Solution. Since this problem is so easily visualized, let us gather some
confidence by first deriving the result geometrically, and afterwards confirm
the result by application of the tools introduced above. It i1s seen from Fig. 3.3
that the projections of the vector v upon the i, directions in the plane are
given by

. 72 . 2
v’1=3cos45°+4sm45°=—2\/—-, v’2=4cos45°-3sm45°=§;

hence, referred to i;, our original vector becomes

v=3i, +4i, (3.1092)
= (Th; + i) (3.109b)

This is to be compared with (3.93). The given components in (3.109a) and the
transformed components in (3.109b) correspond to the v, and the v; com-
ponents of v in (3.93).

Now let us repeat the work by use of the vector transformation law
(3.107a). We start with the easy construction of the basis transformation
matrix defined by (3.96):

Ay A A cos(ij, i, > cosdij,i,» cosdiy,iz»
A= | Ay Ay Ay | =]cosdis, i) cosis, iy cos<is, iz)
Ay A As cos(is, i,y cos(iy, i, cosdiy, i3)

The nine direction cosines are obtained by aid of Fig. 3.3; we find easily for
the prescribed rotation

cos 45° cos45° 0 \/5/2 ﬁ/2 0
A= |—sin45° cos45° 0 |= [- /22 V22 0o|. (3.110)
0 0 1 0 0 1
PN A

&3 |
3 2 \ - i Figure 3.3. Geometrical construction of a
—*I b particular change of basis.
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Thus, with the given column matrix » = (v,) = (3, 4, 0) and (3.110), the vector
transformation law (3.107a) yields

V22 J22 of |3 7.2/
v=dv= | =22 212 of|4|=| 22|, @1
0 o 1]fo 0

which is the column matrix of components v} in i;. This delivers the result
(3.109b) derived before. The new method appears longer, whereas actually,
after one masters understanding of the ingredients needed to do the
calculation, the entire story is presented in only one line by (3.111). Moreover,
it often is easier than having to perceive the geometry associated with the
individual component construction. To see this more graphically, let us work
the converse problem.

Suppose that we are given (3.109b), and we wish to find v, for the same
conditions. With A given in (3.110), we find by (3.107b)

S22 =22 o |72 3
v=dATv'=| V22 V22 of| V22| =]|4]: @112)
0 0 1 0 0

and this yields the desired result (3.109a).

3.6.2.1. Invariant Properties of Tensors

We know from their definitions in (3.12) that the zero and the identity
tensors have the same components with respect to every Cartesian reference
system. Nevertheless, these facts also are evident from (3.108). Indeed, if
T=0, (3.108a) shows that T"=0 also; and for T=1, (3.108a) together with
(3.102a) confirms that 7" =1 too. Otherwise, in general, the components of a
tensor will change under a change of basis, and (3.108) serves to determine
the transformed tensor components from the assigned set when the basis
transformation matrix is given. On the other hand, however, the tensor trans-
formation law (3.108) also implies certain invariant properties that all tensors
POSSeEss.

The angle of rotation of a rigid body, we recall, is a physically invariant
quantity that has nothing to do with the choice of reference frame that we
may use in the description of the rotator or the rotation tensor. Hence, it was
concluded earlier on the basis of (3.74) and (3.89) that this physical invariance
implied that tr T and tr R also had to be the same for every reference system.
In fact, this converse result may now be proved for every tensor.
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We recall the rule (3.41) for matrices of tensors; and we show by (3.108a)
and (3.102b) that

tr 7' =tr(ATA")=tr(ATAT)=tr(IT)=tr T.

Hence, the trace of a tensor is invariant under a change of basis. And,
similarly, the determinant rule (3.63) and the orthogonality property of 4
yields the invariant property

det 7' =det(ATA”) = (det A)}(det T)(det AT)=det T.

Thus, the trace and the determinant of a tensor are invariant under a change of
basis. The three invariants

L=tT, L=iP-t(T?)], [l=detT, (3.113)

are known as the principal invariants of the tensor T. These invariants play a
central role in the mechanics of materials.

The rotator and the rotation tensor are examples of physical tensor
quantities whose components must obey the transformation law (3.108) under
a change of basis. Thus, if either T or R is assigned, its components in any
other basis may be determined. Since tr T, hence tr R, has the same value in
every reference system, the angle of rotation is unchanged; only the descrip-
tion of the axis of rotation is affected by the change of basis. The transformed
axis of rotation may be found from the vector transformation law (3.107); and
the transformed components of T, hence also those of R, may be computed
from (3.70), or (3.87), in the usual way. However, this approach usually is
somewhat more tedious than the application of the tensor transformation law
and the subsequent calculation of the axis from (3.80) or (3.90). But this is
more a matter of judgement or personal preference, and either method will
yield the desired result. A typical calculation is illustrated below.

Example 3.8. The rotator for the aircraft door panel mechanism
described in Example 3.5 is given by (3.84) in frame &= {0;i,}. Find the
rotator referred to a frame &' = {0;i;} resulting from the change of basis
provided by (3.110). Determine the angle and axis of rotation in @',

Solution. The components of T in @’ may be found from the tensor
transformation law. Substitution of (3.110) and (3.84) into (3.108a) and fac-
torization of common elements to simplify the matrices yields

| 1 0 -1 1 0 1 -1
T’-——ATAT=5 -1 0 0 -1 -1 1 1

1 0
1 0
00 2|[-1 o —1flo o 2
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Hence, the matrix of T in &’ is

-1 1 =2

1
T=-| -1 -3 - /2] (3.114)
2
—\/5 ﬁ -2
We observe that tr 7= —3 is the same as tr 7 in Example 3.5. Hence,

the angle of rotation is the same; namely, 6 = 120°. The axis of rotation in @&’
is provided by (3.80). With sin 9=\/§/2 and (3.114), we get

1

a=%(ﬁi;—i;). (3.115)

To check this answer, let us apply the vector transformation law to a
in @. With (3.110) and (3.85) in (3.107a), we have, with factorization,

o =Aa=

11 0 1 V2
‘/i -1 1 0 1 =—1— 1 0 |,
2Vv3 100 2] |1 NER
which agrees with (3.115). These values together with 8 = 120° may be used in
(3.70) to find T referred to @'. This calculation, which returns us to (3.114), is
left for the student.

3.7. Rotation about a Fixed Point

The general finite displacement of the particles of a rigid body is
described by (2.12). Let us assume that the base point O is fixed so that b=0.
Then the displacement of any other point P is given by

d(P)=%—x, (3.116)

in which we recall that X and x are the final and the initial position vectors of
P from O referred to an assigned spatial frame ¢, say. Suppose there exists
another point Q # O for which d(Q) =0 also. Then because the body is rigid,
no particle on the line OQ can be farther from O and Q after the displacement
than it was initially; hence d =0 for every point on the line OQ. In this case,
the displacement may be effected by a rotation (2.7) about the fixed line OQ.
In general, however, (3.116) describes a rotation about a fixed point, and we
do not yet know for this case if such a line OQ exists. Therefore, let us assume
for the moment that there are no points P besides the base point O for which
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(3.116) vanishes. Then, as defined before, (3.116) is a rotation about the fixed
point O.

Now let us recall that a change of basis by a proper orthogonal transfor-
mation is a rigid body rotation about a fixed point, namely, the origin of the
reference frame used initially. Moreover, we known that a rigid body rotation
about a fixed line also may be described by a proper orthogonal tensor. Our
future objective is to determine how these two ideas may be related to one
another. A relation that describes an arbitrary rigid body rotation about a
fixed base point in terms of the nine direction cosines relating the orientation
of the body reference frame in its initial and its final configurations will be
derived next. The connection of the result with a rotation about a fixed line
will be studied in the following section.

To start with, we recall that x is the displaced position vector of P in the
spatial frame ¢ = {O;i,}, and x is the position vector of P in the body frame
¢’ ={0;i;}, which was coincident with ¢ initially, as described in Fig. 2.6.
Thus, when viewed in ¢ alone, we envision the same particle P identified by
two vectors x = x,i, and %= £,i, separated by an angle i, as shown in
Fig. 3.4. This is the usual representation considered in (3.116) and in all of our
earlier equations for the displacement vector in an assigned spatial frame ¢.
Hence, as usual, (3.116) may be written in the following familiar component
form in @:

d(P) =% —x = (%, — X;) ir. (3.117)

However, the same situation may be viewed differently. In the body frame
@' in Fig. 2.6, the point P has always the same position vector p, say.
Therefore, it appears always to an observer in ¢’ that P has the coordinate
components { pj} = {x,} =(x;, x5, x3) so that p= p;i; = x,i; referred to
frame ¢'. Of course, these also are the initial coordinates of P in the spatial
frame ¢, because the frames coincides initially. But the same vector p after the

Final Position

of Ping
(Xy, %3, X3)
i3
d{P)
x
(xy, Xz, X3)
" Initial Position
% of Pin Frame ¢
0, Iz

Spatial Frame ¢

Figure 3.4. Displacement of a particle P
iy viewed in the spatial frame ¢.
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displacement, though unchanged in the body frame ¢’, is identified differently
by another observer in the spatial frame ¢ as the vector % having coordinate
components { p,} = {%.} =(%,, %,, £;). Hence, referred to ¢, the vector p=
pii, = %,i,. Notice that the numbers £, and x, are the same as those in
(3.117). A plane example in Fig. 3.5 shows the relative rotation of the body
frame ¢’ through an angle 6 about the i, =i} axis in the spatial frame ¢ and
the single position vector of the point P from O identified as x by the observer
in ¢’ and as % by the observer in ¢. We may ignore the observers, and note
that in any case we may write

P(P) = piip=Rii = piii = X, i, (3.118)

because the same vector always may be referred to any two bases in just this
way in accordance with (3.93). This arrangement is special, because, by con-
struction, the component numbers in (3.118) are the same as those in (3.117).
Therefore, any relation connecting these components that derives from (3.118)
holds also for the components in (3.117). Thus, in this sense, the two points of
view are equivalent.

In the present viewpoint, the two sets of components for the same vector
p in (3.118) may be related through the orientation angles between the two
frames by a change of basis applied to ¢'. Since X=%,i, =p and x=x,i,
referred to the spatial frame ¢, substitution of the change of basis (3.105a)
into the last term in (3.118) yields

X = R = x, Qi = Qx40 ) = Qx,
or alternatively,

X=Xl =X, A= A Xy

Present Position

i3
/ofPinwand@'

Present QOrientation

of the Body Frame ¢ Initial Position

=—=2"0f Pinpand ¢’

i %= P2

=i Spatial Frame ¢
(Initial Orientation of ¢*)

Figure 3.5. The position vector p representing both x and &, which are viewed in separate frames.
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Therefore, the terminal location in ¢ of a particle of a rigid body due to a
finite rotation about a fixed point is given by

x=0Qx (3.119a)
or
X =X = A x,d, (3.119b)

in terms of the nine direction cosines relating the orientation of the body
reference frame in its initial and final configurations in ¢. This is the result
that we set out to obtain here. The corresponding displacement (3.117) may
be written as

d(P)=%x—x=(Q—1)x=(A;,— ) x,i,, (3.120)

in ¢. We recall from (3.106) that Q is the orthogonal basis transformation
tensor whose matrix is 47 = [cos{i}, i,>]7.

3.8. Euler’s Theorem

It was assumed in the last section that there were no points P besides the
base point O for which (3.116) vanishes. This led to the displacement equation
(3.120) for a rotation about the fixed point O. We are going to prove that, in
fact, this assumption is false. Hence, when a rigid body is turned about a fixed
point, there is always a material line through this point whose particles suffer
no total displacement, hence the same displacement may be produced by a
rotation around this line. This is the substance of Euler’s theorem.

Euler’s Theorem. An arbitrary displacement of a rigid body with a fixed
point O is equivalent to a rotation about a line through O.

Proof. If there exists through O an imbedded line that suffers no
resultant displacement, then (3.120) shows that

(Q—1)x=0 (3.121)

must hold for all places x on that line. This is a system of three homogeneous
linear equations in the components of x; with (3.106), its matrix form is
(AT — Dx =0. The trivial solution x =0 corresponds to the fixed base point
at O. For nontrivial solutions of (3.121), we must have

det(Q — 1) =det(47 — 1) =0. (3.122)
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Since A4 is a proper orthogonal matrix, application of (3.102) and the
elementary rules for determinants yield

det(AT—I)=det(AT—I)"=det[A(]— A7)] = (det A) det(I—A7).

However, this determinant being of third order, it follows that

det(AT — I)=det(J— A7) = —det(4T— 1),

which clearly satisfies the criterion (3.122) for existence of an equivalent fixed
axis of rotation; and the theorem is proved.

Therefore, besides x =0, other solutions of (3.121) exist. Indeed, if the
vector x* is such a solution, so also is x=kx* for —o<k<ow. We
recognize this as the vector equation of a straight line through O. This line is
the axis of rotation. This remarkable result shows that no matter how the
body may have been brought from its initial configuration into its final con-
figuration, there always is a unique axis about which the body may be turned
to move every particle of the body from its initial place to its final place in ¢.
Let the reader show that for nontrivial rotations the axis of rotation is indeed
unique.

Comparison of (3.86) with (3.119) reveals the identity

R=0Q, (3.123a)
hence,

R=AT=[cos<i},ix>17, (3.123b)

by which the rotation about a fixed point may be reduced to a rotation about
a fixed line, in accordance with Euler’s theorem. The angle 8 of the rotation is
determined by (3.89), in which tr R=tr 47, And the unique axis of rotation in
the spatial frame ¢ is found by aid of (3.90), in which R,=A%= —4,. Of
course, the case @ =n must be treated separately as described in (3.77), or it
may be found by use of (3.88). The equivalent rotation about a fixed line
characterized by (3.89) and (3.90) is called the (equivalent) Euler rotation.

The result (3.123) also may be cast in terms of the rotator. We find with
(3.87), (3.122), and (3.123) the relations

T=Q-1, (3.124a)
T=AT—1, (3.124b)
det T=0. (3.124c)

Therefore, as remarked in Chapter 2, it follows from Euler’s theorem and
(2.12) that the general displacement of a rigid body is equivalent to a parallel
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translation b of the base point O together with a displacement Tx due to a
rotation about a line through O:

d(P)=b+Tx  [cf. (2.13)].

Another useful form of (2.13) may be obtained by aid of (3.87). Recalling
the description of the vectors defined in Fig. 2.6, the reader may show that
(2.13) yields

X(P)=B(0)+Rx(P), (3.125)

wherein X(P) and B(O) are the terminal position vectors of P and O in the
spatial frame & = {F; I, }.

Euler’s theorem has shown that the components of the rotation tensor,
hence aiso those of the rotator, may be found by construction of the basis
transformation matrix 4 in (3.123b). Thus, the angle and the axis of the
equivalent Euler rotation may be obtained from (3.89) and (3.90) when the
initial and final orientations of the body reference frame are known. This will
be illustrated next.

Example 3.9. A certain mechanism is to be designed to rotate an
antenna panel of a spacecraft about a point O so that the side facing the i,
direction in the initial configuration ultimately must face the initial i, direc-
tion in the terminal configuration shown in Fig. 3.6. Determine the equivalent
Euler rotation required for the design.

Solution. The spatial frame ¢ = {O;i;} is chosen to coincide with the
body frame ¢’ = {O;i}} in its initial orientation. The orientation of the body
frame in the terminal configuration of the panel is shown in Fig. 3.6. The
diagram is used with (3.123b) to construct the rotation matrix

0 01
R=A4"=]0 -1 0. (3.126)
1 00

Thus, tr R= —1 and (3.89) yields cos @ = —1. Hence, 6 = n is the equivalent
angle of rotation.

The axis of rotation cannot be determined by (3.90) for this exceptional
case; rather (3.77b) or (3.88) must be applied directly. Use of (3.87) in (3.77)
yields

a®a=iR+1) (3.127)

With (3.126), the diagonal components in (3.127) yield the three equations
a?=1/2, a3 =0, as=1/2; (3.128)
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Initial Configuration

Figure 3.6. Finite rotation of an Final Position
antenna panel. g i =i

and the single nonzero, nondiagonal element o, a3 =1/2 shows that «; and a;
have the same sign. We thus conclude with (3.128) that the equivalent Euler
rotation consists of a right-hand rotation of # = 180° about either of the direc-
tions given by

a= ié(i,+i3) (3.129)

in the spatial frame ¢. This axis lies in the plane of i, and i, at 45° from the i,
axis.

It may be helpful to show that the results flow also from (3.88). Use of
(3.126) gives

0 01 oy o oy
Ra=]0 -1 0 o | = |—a | =a=] a,
1 00 oy oy o

Therefore, o, = a; and o, =0. Since @ is a unit vector, we have also «f + a3 +
a3=202=1; thatis, o, =03 = iﬁ/l Hence, the axis of the Euler rotation is
given by (3.129), as before. O

Example 3.10. In another rotational maneuver of the panel mechanism
from its initial configuration shown in Fig. 3.6, the rotation matrix about the
point O is given by

12 0 —./32
R=| o 1 o | (3.130)

J32 0 12
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Find the equivalent Euler angle and axis of the rotation through O. Sketch
the final orientation of the panel, and use the diagram to confirm the basis
transformation matrix associated with (3.130).

Solution. With tr R =2, (3.89) yields § = cos ~!(1/2) = 60° for the rotation
angle. The axis of rotation is determined by (3.90). Thus, with sin 0=\/§/2
and use of (3.130), we find easily @ = —i,. Of course, a rotation of 300° about
the axis i, is the same; but, recognizing this trivial equivalence, we have
agreed earlier to restrict e [0, n]. It must be born in mind, however, that in
the design of the mechanism to move the panel to the terminal state found
above, the actual rotation may be done in an infinite variety of ways. There
are infinitely many combinations of rotations whose resultant leads to the
same rotation matrix (3.130); but there is only one Euler rotation to which all
are equivalent.

The Euler rotation consists of turning the body through 60° about the
axis @= —i, in the conventional right-hand sense. Therefore, the antenna
panel has the final orientation sketched in Fig. 3.7. Thus, referring to the
figure and recalling (3.123b), we find the transposed basis transformation
matrix

cos 60° 0 cos 150° 12 0 —/312
AT= 0 1 0 = 0 1 0 s
cos30° 0 cos 60° J32 0 12
which is seen to be the same as R in (3.130). O

It is important to realize that there are infinitely many lines through the
fixed base point O about which the body may be turned so as to move any
single given particle P from its initial place to its final position that resulted
from a previous arbitrary rotation about O. Euler’s rotation is remarkable
because, among these infinity of rotations, only Euler’s rotation will move
every particle of a rigid body, that is the entire body, from its initial con-

Rotated
Configuration \§

Figure 3.7. Sketch of the panel orien-
tation in ¢ after a 60° rotation about
i a= —i,.
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figuration in ¢ into its final configuration in ¢, however that terminal state
actually may have been achieved. This distinction may be readily visualized in
Fig. 3.4. Therein, we recall that the rotation about the fixed point O carried
the particle P at x in ¢ into the place X in ¢, the angle between these vectors
being i/, say. We thus visualize that the same displacement of the single par-
ticle P may be effected by a rotation through the angle y about a fixed axis

a=(xxX)/|xxX|, (3.131)

which is perpendicular to the plane of x and X. We note that this may be
rewritten as

x x & = |x|? sin Ya. (3.132)

But this simple rotation generally is not the equivalent Euler rotation, because
it does not move every particle of the body into its terminal state resulting
from the given rotation about the fixed point O. This will be illustrated in a
numerical example below. The reader may show that (3.132) actually is
equivalent to (2.7) and, in fact, may be used to derive it.

Example 3.11. The initial and final position vectors of the antenna horn
described in Example 2.1 in a rotation about the fixed point F are given as

X(H)=§—2\/:2'(I+J)+6K m, ﬁ(H)=31_\(<§(111—J)+2—:Km

in the spatial frame @ = {F; 1, }. Find the angle and axis of the simple rotation
described in (3.132) which transforms x into X by a rotation in their plane,
and thereby show that this rotation is not the unique Euler rotation.

Solution. It is seen from the data that |x|=|%| =3 \/3 m, and we com-
pute

xx&=3(9/21+7 /25 —8K) m>.
Hence, |x x %] = 162/5 m?, The angle of the plane rotation is given by

. |x x X|
sin § =

7= 1825

and gathering these values in (3.131), we find the axis of the simple rotation
that moves x into X, as assigned:

a=%(9/21+7./2J—8K).

It is evident that the axis and angle of rotation found here are not the
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same as those assigned in Example 2.1, wherein the fixed axis of rotation
clearly is the Euler axis about which the entire body is turned. Hence, the dis-
placement (2.7) for a rigid body rotation about a fixed line is not
automatically equivalent to a rotation about the fixed point shown in Fig. 3.4.
For any given change of basis, ie., for any pair of orientations of the body
reference frame in a pure rotation about a fixed point, the angle and the axis
of the equivalent rotation about a fixed line generally cannot be found in this
way. Indeed, this illustration shows clearly the importance of Euler’s mar-
velous theorem.

3.9. Fundamental Invariant Property of the Rotator

The order of the motions of translation and rotation in the general dis-
placement (2.13) obviously may be reversed, and they may occur
simultaneously. It is also clear that the choice of base point being arbitrary, a
given displacement may be constructed in an infinite variety of ways.
Therefore, this raises the question of whether or not the rotator may be affec-
ted when the base point is shifted arbitrarily to another point in the body. The
question is settled by the following theorem.

Rotator Invariance Theorem. For a given displacement of a rigid body, the
rotator is independent of the choice of base point; consequently, the axes of
rotation corresponding to all base points are parallel and the angles of rotation
about them are equal.

Proof. Let P be any particle of the rigid body #; and, for the same dis-
placement of 4, let us assume that T and T* are distinct rotators of 2 about
lines through two base points O and O* whose displacements are b and b*,
respectively, as diagrammed in Fig. 3.8. Since the displacement of any particle
of the rigid body, by definition, is the same for every choice of base point used

Figure 3.8. A change of base point in a general dis-
placement of a rigid body.
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in the decomposition described by (2.13), with the vectors defined in Fig. 3.8,
we may write for both O and O*

d(P)=b+Tx =b* + T*x*
= (b+Tr)+ Tx*, (3.133)

wherein x =r 4 x* has been used. But with O as the base point, it is seen that
the term in parentheses is equal to b*. Therefore, (T* —T) x* = 0. Because P
is an arbitrary particle, this equation must hold for all x*; hence, (T*—T)
must be the zero tensor. It follows that the rotator is invariant with respect to
the choice of base point: T* =T(6*, a*)=T(0, a).

Moreover, it is now evident from (3.74) and either (3.76) or (3.80) that
the rotation angles 0* and 0 about the axes a* and a, respectively, may differ
by at most a trivial rotation or an image rotation, neither of which is of
special consequence. Therefore, a* = a and 8* = 6. Thus, in a given rigid body
displacement, the axes of rotation corresponding to all base points are parallel
and the angles of rotation about them are the same. This completes the proof
of the invariance theorem. In sum, it shows that the Euler rotation in a given
rigid body displacement is invariant with respect to the choice of base point.

Use of the rotator invariance theorem in (3.133) yields

d(P)=b+Tx (3.134a)
=b* + Tx*. (3.134b)

That is to say, the finite displacement of a particle of a rigid body due to a
translation b and a rotation T about a base point O is equivalent to an identical
rotation T about any other base point O* together with a new translation b*
given by

b* =b+Tr, (3.135)

in which ¥ =X — x* is the position vector of O* from O. (See Fig. 3.9.)
A change of base point, therefore, plainly results in a different trans-

Figure 3.9. The Euler rotation for a given displacement is
the same for every choice of base point.
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lational displacement given by (3.135) for the new base point. Consequently,
for each choice of base point the translational displacement of a rigid body
will vary, but the Euler rotation will not.

3.10. The Parallel Axis Theorem

The foregoing results enable one to find both the translational and
rotational parts of a rigid body displacement corresponding to any proposed
base point when these displacements are known for an assigned base point.
An easy result that derives from (3.134) and the fact that Tx - a =0 for all par-
ticles is summarized by the Invariant Projection Theorem.

Invariant Projection Theorem. The projections on the Euler axis of
rotation of the displacements of all points of a rigid body are equal; that is, for
all particles P

d(P)-a=b-a (3.136)

In particular, for a rotation about a fixed point (or line), we have b=0;
and, trivially, (3.136) verifies that the displacement of every material point is
perpendicular to the Euler axis of rotation. In this case, (3.134) and (3.135)
show that the displacement of the particle P is given by

d(P)=Tx =b*+Tx* (3.137a)

with
b*=Tr (3.137b)

and
b*-a=0, (3.137¢)

where x and x* are the position vectors of P from O and O*, respectively, and
r=x—x* is the position vector of O* from O. (See Fig. 3.9 with b=0.) The
result (3.137) thus yields the following theorem.

Parallel Axis Theorem. The displacement of a particle of a rigid body due
to a pure rotation about any line is equivalent to a displacement due to an equal
rotation about a parallel line together with a translation perpendicular to that
line, and conversely.

A simple application that demonstrates the parallel axis theorem will be
studied next.
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Rotate 90°
About the a= k Axis
Initial Configuration e=m—————————Final Configuration

Figure 3.10. Rigid body displacement in a pure 90° rotation about O.

Example 3.12. A particle P of a rectangular plate is located initially at
x(P)=1ift from the base point O in the spatial frame ¢. The plate is turned
90° counterclockwise about the axis a =k so that the final position vector of
P referred to ¢ is X(P) = 1j ft, as shown in Fig. 3.10. Thus, the displacement of
P referred to ¢ due to the pure rotation about O is given easily by

d(P)=&(P)— x(P) = (—i+j) ft. (3.138)

Of course, the same thing may be computed from (3.137a) for a pure rotation
about the point O. With d =Tx = (R —1)x, we have

-1 -1 0 1 —1
d(P)=Tx(P)= 1 -1 0 0= 1| ft,
0 00 0 0

which agrees with (3.138).

Now let us consider the same plate to be rotated 90° about a parallel axis
at the new base point O* initially at r= —ift from O in ¢, as shown in
Fig. 3.10. The initial position vector of P from O* is x*(P)=x(P)—r=2ift.
The parallel axis theorem states that the same displacement given in (3.138)
for a pure rotation about O can be accomplished by a translation b* perpen-
dicular to the axis a =k together with the same rotation about a parallel axis
through O*. Since T is the same as before, the rotational part of the dis-
placement of P about O* is given as

-1 -1 0|2 ~2
x*P)=| 1 -1 oflo|=1| 2| (3.139)
o o offo

(]
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After pure
rotation about
point 0* 2.

|

X

. _+_. ——x,
|
NY |
. X,
‘\Q Final configuration
; after rotation about O*

and translation b*
) equivalent to a pure

rotation about O

Figure 3.11. The displacement due to a pure rotation about an axis at O is equal to the dis-
placement due to the same rotation about a parallel axis at O* and a translation b* perpen-
dicular to the axis of rotation.

Thus, use of (3.138) and (3.139) in (3.137) yields b*=d(P)—Tx*(P)=
{(—i+j)—(=2i+2j)=(i—}) ft, which is certainly perpendicular to a. This is
the required translational displacement of O* in ¢. The reader may confirm
that the translation b* obtained from (3.137b) yields the same result. The dis-
placement is illustrated in Fig. 3.11. Notice that b* is simply the chord dis-
placement of O* on the circle of radius OO* due to a pure rotation about O.

3.10.1. The Center of Rotation

A displacement of a rigid body # each of whose particles is displaced
parallel to a given plane is called a plane displacement of %. Any plane cross
section of # parallel to the assigned plane, which is named the displacement
plane, may be chosen as the plane for discussion; it requires no special dis-
tinction. It follows that the axis of rotation must be perpendicular to the dis-
placement plane. If T=0, the plane displacement is a pure translation with
d(P)=D> for all particles P. If there exists a base point O for which b=0, the
plane displacement is a pure rotation about an axis at O.

It is not difficult to prove that in an unconstrained displacement of a rigid
body in space, there is, in general, no point whose displacement is zero. (See
Problem 3.36.) On the other hand, it can be shown that for a plane dis-
placement of a rigid body, there always exists one and only one point whose dis-
placement is zero. This is a consequence of the parallel axis theorem applied to
the case in which every particle suffers a plane displacement consisting of a
parallel translation and a rotation about an axis normal to the plane. Hence,
the entire motion, by the parallel axis theorem, is equivalent to a pure
rotation about a parallel axis at a point O*, say, situated in the displacement
plane. The point O* whose displacement is zero is known as the center of
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rotation. In general, this unique base point will not be within the body, unless,
of course, it happens to be a fixed material point about which the body is
rotating normal to the displacement plane.

It is easy to see geometrically that because a particle P in the dis-
placement plane must be equidistant from the center of rotation, the point O*
must lie on the perpendicular bisector of the displacement vector d(P) of the
particle. But the same thing is true for every particle situated in the dis-
placement plane; hence, the center of rotation may be constructed graphically
by locating the point of intersection of the normal bisectors of the dis-
placement vectors of two particles in the displacement plane. Of course, it
may happen in some problems that the center of rotation can not be
accurately located in this way. Therefore, we are led to question how the cen-
ter of rotation may be computed. For the plane displacement, this is an easy
problem in vector geometry, which is left as an exercise for the reader. (See
Problem 3.37.) The parallel axis theorem and existence of a center of rotation
in a plane displacement lead to some useful graphical applications which may
be found in most standard texts on kinematics of machines. A few example are
included in the exercises at the end of the chapter. (See Problems 3.38-3.40.)
Some additional theoretical results will be presented next.

3.11. Chasles’ Screw Displacement Theorem

The choice of base point to be used in (2.13) is totally arbitrary, so any
convenient choice is admissible. In fact, we recall again that the base point
need not be a material point of the body; so every conceivable point of space
is a potential candidate for use as a base point. Because of this arbitrariness in
the selection of a base point, the displacement of a rigid body particle may be
described in an infinite variety of ways. Therefore, we are led to question if
there may be any particularly special choices of base point for which the dis-
placement of the particles of a rigid body may be most simply, perhaps uni-
quely, described. We are going to show with the aid of the parallel axis
theorem that the answer is provided by the following remarkable theorem due
to Chasles:

The Screw Displacement Theorem. Any displacement of a rigid body is
reducible to a unique screw displacement consisting of the Euler rotation about
an axis and a translation along that axis.

Proof. Let the displacement of a base point O and the Euler rotation of
the rigid body be assigned; then the general displacement of any particle P at
x from O is provided by (3.134a). We wish to prove that there exists a base
point O*, say, whose displacement b* is parallel to the axis of the Euler
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rotation; hence, with O* as the base point, the result follows. Therefore, we
shall need to determine the new parallel translation b* and the location r of
O* from O.

We may always write b=b,+ b, in terms of the component vectors b,
and b, normal and parallel, respectively, to the axis of rotation, as shown in
Fig. 3.12. Hence, (3.134a) may be written

d(P)=b,+ [b, + Tx(P)]. (3.140)

However, in accordance with the parallel axis theorem, the displacement
terms consisting of a rotation about a line and a translation perpendicular to
the line is equivalent to a pure rotation about a parallel axis through a base
point at O*, say. Thus, the term in the brackets in (3.140) may be replaced by
the pure Euler rotation Tx*(P) to yield

d(P)=b, + Tx*(P) (3.141a)

with
b,= —Tr, (3.141b)

where r=x —x* is the position vector of O* from O, as shown in Fig. 3.12.
But (3.141a) states that the assigned displacement d(P) is equal to the same
Euler rotation about an axis at O* and a new translation b* = b, paraliel to
that axis, and Chasles’ theorem follows.

This displacement (3.141) is recognized as a typical screw displacement,
from which the theorem derives its name. The axis of the Euler rotation at O*
is called the screw axis.* The pitch of the screw, defined by p=(b-a)/6, is
identified as the ratio of the screw translational displacement to the angle of
rotation. Thus, in terms of the familiar screw displacement of a nut, the rec-
tilinear distance along the screw axis through which the nut advances when
turned through a given angle is simply the product of the pitch of the screw
and the circular measure of its angle of rotation. Finally, we see from (3.136)
that the pitch of the screw is invariant with respect to the choice of base point. It
is apparent that zero pitch means pure rotation, while infinite pitch is a pure
translation.

The system of three algebraic equations (3.141b), in which the normal
component of the assigned base point translation is given by

b,=b—b, (3.142a)
with
b,= (b a)a= pba, (3.142b)

*In older works, the screw axis sometimes is called the central axis, and Chasles’ theorem is
known as the central axis theorem. The screw theorem forms the foundation upon which the
classical kinematical theory of screws was built. See the treatise by Ball referenced at the end of
Chapter 2.
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Screw Axis

Center of

(0} r
Rotation

Figure 3.12. Schematic for Chasles’ screw displacement theorem.

determines the position vector r of the new base point O*. However, since
det T=0 in (3.124c), the system (3.141b) does not determine r uniquely; for, if
r is a solution of (3.141b), so is x’ =r + ka for all values of the constant k. We
recognize this relation as the vector equation of the screw axis through O%; it
implies that no special point on the new axis of rotation is distinguished. Since
any point on the new axis may be used, without loss of generality, we may
choose O* so that r is the shortest vector from O to the new parallel axis.
Then, in addition to (3.141b), we have the condition

r-a=0. (3.143)

The point O* located in this way will be called the center of rotation. Of
course, since r will vary with the choice of base point, the location of the cen-
ter of rotation with respect to the base point used will vary along the axis of
rotation. Thus, for an assigned base point and with (3.141b) and (3.143), the
location of the center of rotation O* yielding the screw displacement (3.141a)
may be uniquely determined, as will be shown next.

With the aid of (3.70) and (3.143), it is seen that (3.141b) may be written
as

Tr=Srsin 0 — (1 —cosf)r= —b,. (3.144)

We recall next that a is the vector of the skew tensor S so that Sr =a xr. And,
with (3.143), it may be seen that @ x Sr = —r. Upon forming the cross product
of (3.144) with a, we find

rsinf@+(1—cosf)Sr=axbh,. (3.145)

Thus, for nontrivial values of 8, (3.144) may be solved for the vector Sr; and
when the result is substituted into (3.145) and reduced by use of a
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trigonometric identity, we obtain the unique position vector of the base point
O* on the screw axis:

1
r=§[b”+cot§axbn], (3.146)

in which 6 and a are the angle and axis of the Euler rotation and b, in
(3.142a) 1s the displacement of the base point O perpendicular to the Euler
axis determined for the assigned displacement of the body. This completes the
technical details in Chasles’ screw theorem.

If the displacement is a plane displacement, then b*=b,=0, and b,=b
lies in the displacement plane. Therefore, in a plane displacement, the center
of rotation O* coincides with the plane center of rotation described earlier in
Section 3.10.1, and (3.146) has the easy geometrical description shown in
Problem 3.37. Thus, the interpretation of the center of rotation in the general
case is similar, but an additional translation along the screw axis is superim-
posed on the rotation. And, as in the plane case, it is evident that in general
the screw axis will not be within the body.

The foregoing method of reduction of any given displacement of a rigid
body to a screw displacement is unique. It is clearly impossible to have dis-
tinct screw axes through separate base points. For any nontrivial rotation
about either axis, the particles situated upon the other line will not be
restored to their original line after the rotation. This observation may be
proved analytically as follows.

Suppose that there are two screw axes o' and a* through noncoaxial
points O’ and O* such that (3.141a) holds for the given displacement d(P).
Invariance of the rotator with respect to the choice of base point implies at
once that the axes must be parallel; hence, @’ = a* = a, say. Therefore, for dis-
tinct screw displacements with respect to the noncoaxial base points,

d(P)=b, + Tx'(P) =b* + Tx*(P),

wherein x’(P) and x*(P) denote the position vectors of P from O’ and O¥*,
respectively. Also, b, and b} are the corresponding screw translations along
the separate screw axes at O’ and O*. But invariance of the pitch implies that
b*=»b,; and it follows from the previous equation that Tr=40, where r=
x’ —x*, Since T # 0, this means that r must be parallel to a; hence, contrary to
the hypothesis, O’ and O* lie on the same axis. Therefore, we may conclude
the following uniqueness theorem: There is at most one screw displacement by
which a given displacement of a rigid body may be accomplished. Thus, among
all possible displacements of a rigid body, Chasles’ unique screw displacement
has unparalleled simplicity.

In the next section, it will be shown that successive displacements of a
body may be represented by successive screws whose composition is an
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equivalent unique screw displacement. The following example will illustrate
the essential aspects of Chasles’ notable screw theorem.

Example 3.13. A rigid body suffers a displacement described by a

rotation
1 3 1—./3 0
S 1 ey
R=Y=1-1+3 1+/3 0
0

0 22

about a point at (3, —2, —4) cm in the fixed frame @ = {F; I, }, together with
a certain translation. Another particle P, initially at X=1—2J—-5Kcm in &,
has been moved to the place X =4I+ 6J —K cm. Find the equivalent screw
displacement of the body. What is the axial advance of the body in one
revolution about the screw axis?

Solution. Any base point whose displacement is known may be used to
determine the screw translation and the location of the screw axis in @. Since
the rotation is independent of the choice of base point, the point P=0 is a
convenient choice for which the displacement is given by

b=X—-X=31+8J+4K cm.

It is easily seen from (3.90) that the Euler axis of the rotation is a =K.
Hence, with b above, (3.142b) yields the screw translation

b, =4a=4K cm,

which is the same for all points of the body; and (3.142a) yields the normal
translation of the base point O:

b, =31 + 8J cm.

The angle of the equivalent rotation is found by (3.89). Thereby, we
obtain from R above

9=cos‘1[\/§(1 +\/§)/4] =15°=mn/12 rad.

The screw axis passes through the base point O* located at r from the
base point O, in accordance with (3.146). Use of the foregoing angle and nor-
mal translation vector yields

0 sinf _ 202—./3)"

§=1—cos0_4_\/§_\/€’

cot
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and

axb,= —8I+3Jcm.

Substitution of these calculations into (3.146) gives

= —28.8841 + 15.394J cm.

Therefore, the screw axis passes through the center of rotation O* whose
position vector B* from the origin in @ is given by

*=r+X= —278831+13.394J — 5K cm.

We thus find that the given displacement may be reduced to a unique
screw displacement consisting of a rotation of 15° about an axis a=K
through the point at B* together with a pure translation of the body through
4cm along the axis. The pitch of the screw, defined in (3.142), is p=
48/n cm/rad. Thus, in one revolution about the screw axis, the body will
advance a distance of 2nmp=96cm along the axis. (See Problems 3.41
and 3.42.)

3.12. Composition of Finite Rotations

It was shown in Section 2.7 that successive finite rotations of a rigid body
about concurrent axes are neither additive nor commutative. Therefore, as
illustrated in Fig. 2.7, the displacement of a rigid body generally will depend
upon the order in which the rotations are performed. We saw in a few earlier
examples that when the successive rotations are easy to visualize, their com-
position may be readily written down by use of the direction cosines between
the body imbedded axes in their terminal state and those of the spatial set
with which they were coincident initially. Needless to say, it is not always easy
to perceive the successive and the resultant effects of several complex
rotations, so it will be useful to derive the rule for their composition.

Let us begin by recalling (3.119a) and (3.123a) for a rotation about a
fixed point O. After a rotation R in the spatial frame ¢ = {O; i, }, the position
vector X of the particle P which initially was at the place x will be given by
(3.86):

$=Rx  [cf. (3.86)].

The specific form of the matrix of R in ¢ may be found as described earlier in
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terms of the direction angles of the imbedded body axes; or, for a rotation
about any axis @ in ¢, the matrix R may be determined from its relation to
the rotator in (3.87), whichever method may be the more appropriate.

Let us consider N successive finite rotations R, R,,..., R, about N con-
current axes through O, all referred to ¢; and let x=%,, X,, X,,..,
Xy _1, Xy =x* denote the corresponding successive position vectors of the par-
ticle P which initially is at x from O, all referred to ¢. Then, by (3.86), we
have N equations X, =R, X,, X, =R,X,,...; or, more briefly, X, =R, %, _,, k=
1,2,., N (no sum on k). Hence, successive elimination of %, , from these
equations yields the final position vector x* of P in terms of its initial place x;
namely,

x*(P)=R*x(P) (3.147a)
with
R*=R,R,_, -R,R,. (3.147b)

It is easy to show that R* satisfies (3.91) and thus represents the
equivalent Euler rotation about O. The resultant angle of rotation #* and the
resultant axis a* may now be found in the usual way from (3.89) and (3.90)
applied to R*. The resultant axis of rotation generally will depend on the
order of the rotations in (3.147b), but it follows from the rule (3.41) that 0* is
independent of that order. That is, for rotations R, and R,, in general
R,;R; #R,R,; but it is true always that

tr R* =1+ 2 cos 6* = tr(R, R,) = tr(R,R, ). (3.148)

Of course, when the base point O has the displacement b in & = {F;1,},
which is parallel to ¢, the resultant displacement of P in @ may be written in
terms of the resultant rotator as follows:

d*(P)=b+T*x(P) with T*=R*_1. (3.149)

It is important to recall that tensors have different components with
respect to different bases; therefore, it is essential to bear in mind in (3.147b)
the reference bases to which the rotation tensors are referred. If all of the
rotations are referred to the same frame y = {O; e, }, say, then the resultant
rotation matrix R* of (3.147b) is obtained from the product of the matrices of
the tensors formed in the order indicated in (3.147b), and R* also will be
referred to the frame . In general, however, if different frames are used to
follow the successive rotations, (3.147b) does not always reduce simply to the
product of matrices of the tensors in the order indicated there. To see the dif-
ference, we shall illustrate each case in its turn.

Let us consider first two rigid body rotations R,: e, — e} and R,: e, —» €
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with respect to the same basis e,. Then (3.103) and (3.123) yield the represen-
tations

R, =e¢;®e,=R)e,®¢, and R,=e ®e,=R} e Qe,,

in which RY, = A}, =cos{e}, e,) for n=1, 2 (thatis, R, = 4,) are assumed to
be known. The resultant rotation is formed by the product of these tensors in
accordance with (3.147b). Recalling (3.104) and the orthogonality relations
(3.95), we find

R,R, =R}, R}, e,®e¢,=R¥
which yields the following matrix equation for the resultant rotation:

R% = R.R!

rp i pk>

that is, R*=R,R,.

We thus find that the resultant rotation is the product of the matrices of the
rotation tensors, with respect to the basis e,, formed in the order indicated in
(3.147b); and R* is referred to the same basis.

Now let us suppose that to find the components of the second rotation it
proves more convenient to use a different basis such that R,: e; — ez, say. This
is a rotation with respect to the basis e} that was reached after the first
rotation considered before. Thus, (3.103) and (3.123) yield the representations

R, =ej®e,=R),e,®e, and R,=e;®e;=R] ¢ ®e,,
in which R2, = A7 =cos{e;,e,> so that R,=A], and R, is the same as
previously. These arrays are assumed to be known from the geometry. The
resultant rotation is formed by the product of these tensors in accordance
with (3.147b). Substituting the change of basis e; = R, e, into the last term
above and recalling (3.104) and the orthogonality property (3.91) applied to
R,, we obtain

R* = RZRI = qu R.errlnq(ex ® em) R;l;k(ep ® ek) = Ral'rer'qes ® eq = R:qesq'
This yields the following matrix equation for the resultant rotation:

R%=R! R, thatis, R*=R,R..
Thus, when the resultant rotation is referred to the initial or the terminal
basis, but the successive rotations are performed with respect to different
bases for computational convenience, say, we see that the order of the product
of the matrices may not be the same as the order of the product of their ten-
sors in the fundamental equation (3.147b). In fact, in this example, the order
is reversed. (See Problem 3.49 also.)

Although the construction of the basis transformation matrices for suc-
cessive rotations is straightforward, the last example shows that the method
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sometimes may become awkward when the axes of rotation are not the axes
of one of the primary reference frames being used. In such cases, it is often
simpler to apply the formula (3.87) for the rotation tensor in terms of the
angle and axis of the assigned rotation in an appropriate frame = {O; e, }.
We combine (3.70) and (3.87) to obtain

R=1+Ssinf+(1—-cos ) a®a—1), (3.150)

wherein, for the reader’s convenience, we recall (3.72) and (3.24):

S= —euoe; (3.151a)
and

e@a=q,0e; (3.151b)

referred to . For each assigned axis and angle of rotation, R may be com-
puted from (3.150); and the resultant rotation may be found by the matrix
product of the successive rotation matrices in the form provided in (3.147b).
The angle and the axis of the resultant Euler rotation may then be computed
in the frame y by aid of (3.89) and (3.90), as usual. It is useful to observe in
calculations that the matrix of S is skew and that of a ® a is symmetric.

Example 3.14. The solar panel of a spacecraft receives three rotations
‘about axes a, in the spatial frame y = {O; e, }, as shown in Fig. 3.13. The first
rotation is 90° about the panel axis a,; the second is 90° about the satellite
body axis a,; and the last is a 180° turn of the satellite about the line a;. Find
the angle and axis of the equivalent Euler rotation. What is the final orien-
tation in ¥ of the satellite body axis?

SNSRI
BRSSP

R S S S
JESESS

Figure 3.13. Finite rotations of the solar panel of a spacecraft.
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Solution. The equation for the kth rotation R, through the angle 6,
about the axis @, may be obtained from (3.150):

R,=1+8,sin8,+ (1 —cos O Ha, Da,—1), (3.152)

without sum on k. Thus, with 8, = r/2, the first rotation is given by R, =8, +
a, ® a,, wherein the axis is obtained from the geometry in Fig. 3.13:

3
a1=%e2+§e3

in . Then use of this result in (3.151) yields the matrices

0 -12 /32 ) 0
(1= 12 o 0 | [, @a,]=| 0 34 /34|
-J32 0 0 0 34 14

referred to . It follows from the formula given earlier that the matrix in  of
the rotation tensor R, = R! e, is given by

0 —1/2 /32
R=1\| 112 34 /34
~J32 J34 14

The second rotation is easily obtained by construction of a basis transfor-
mation array, as described in Example 3.6, or by use of the same formula
given above with 6,=n/2 and a,=e;. The reader will find the tensor R, =
RZe,; whose matrix in ¥ is

0 -1 0
R,=[1 0 0
0 o1

The final rotation is gotten by use of (3.152), in which

NG

0,=n and a;= m—e,+7

2

€.

We shall need to compute R; =203 ® a5 — 1. Thus, with (3.151b), we find the
following matrix of the tensor Ry =Rle  iny:

~12 0 -3
0

R,= 0
-J32 0 12
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Since all three rotation tensors are referred to the same frame, the
resultant Euler rotation in frame y is obtained from the matrix product R* =
R;R,R; in accordance with (3.147b). Execution of the products yields

1 0 0
R*=|0 12 /32
0 32 12

The angle of rotation is given by (3.89) in which tr R*=2; we find
0* =60°. Finally, use of 8* and R* in (3.90) yields a* = e, for the axis of the
resultant rotation of the solar panel in .

The satellite body axis is rotated in  due to the rotation R; alone. Its
final orientation a; may be found from (3.105a) or (3.86), namely, a)=
R;a,=R;e;. Thus,

-12 0o —/32][o —J3n
[a3]= 0 - 0 0= 0 ,
/32 0 1 1 1/2

that is, @ = —/3/2e, + 1/2¢, in y.

3.12.1. Euler Angles and Rotations

A rigid body having one point fixed has three degrees of freedom that
may be described by three independent rotation angles. There is, of course, no
unique choice for these angles, so the reader may expect to encounter different
descriptions in the literature. The most widely used description is the set
known as the Euler angles. There is, nonetheless, no standard sequence for
execution of the corresponding rotations, hence different formulas for the
composition of rotations described by the same set of Euler angles also occur
in the literature. In addition, the definition of the transformation matrix A
used in other texts sometimes is the transpose of the definition employed here.
Therefore, the reader is cautioned to check the definition of the Euler angles,
the sequence of the Euler rotations, and the description of the basis transfor-
mation array, when consulting other works. Herein, we shall adopt a sequence
that seems to have wide appeal.

The Euler angles are a set of three independent parameters that specify
the orientation of a rigid body in the spatial frame ¢; they relate the orien-
tation of the body frame ¢’ to ¢. The set of Euler angles will be introduced
below. Three corresponding consecutive rotation matrices will be expressed in
terms of these angles, and their composition representing the equivalent Euler
rotation of the body in ¢ will be derived.
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We shall begin the sequence with the body frame ¢’ = {0; i} coincident
with the spatial frame ¢ = {O;i,}, as usual; and let the body receive three
successive proper rotations about certain body axes as described next and
iltustrated in Fig. 3.14. The first rotation is through an angle ¢ about the axis
k'=k in ¢ so that R,:i, — i}, which identifies the body frame in its first dis-
placed position. The next rotation is through an angle # about the body axis
i’=i! in @ so that R,:i} — i3, the body frame in its second displaced position.
Finally, the body is turned through an angle y about the body axis k' =13 so
that R;:i2 — iy, the body frame in its terminal position in ¢. The three angles
{#, 0, define the set of Euler angles.

We apply (3.123) to obtain for the first rotation the matrix R, =A] =
[cos(i), i, >]7. We thus find

cos¢g —sing O
R,=|sing cos¢ O]. (3.153)
0 0 1

Similarly, the second and third rotation matrices are given by R,=A4]=
[cos(i2,i!>]" and Ry= AT =[cos(i,,, i2>]". Hence,

1 0 0 cos Y —siny 0
R,=]0 cosf —sinf|, R,=|siny cosyy O]. (3.154)
0 sinf cosf 0 0 1

Since all three rotations are with tespect to different bases following the
successive positions of the body frame, in accordance with the discussion of
this case in the last section, the composition rule (3.147b) yields the resultant
rotation formula R* = R, R,R,. Executing the indicated matrix products of
(3.153) and (3.154), we derive the resultant Euler rotation

cpcy —sgclsy —cpsy—sgctcy s¢ s
R¥*=| spcy+cpclsy —spsy+cpcOdcy —cpsd |, (3.155)
s sy sf cy cl

wherein, for brevity, ¢ and s denote cos and sin. The corresponding transfor-
mation matrix is 4* = [cos{i/, i, >]= R*T; hence, (3.155) are the components
of the resultant rotation tensor R* with respect to either basis of ¢ or ¢’, as
described in (3.103). Equations (3.106) and (3.123) show that 4* = R*7 is the
transformation from the space frame to the body frame, whereas A*" = R* is
the inverse transformation from the body frame to the space frame. Therefore,
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¢’ in its second
k=i}=k' displaced position

¢ in its first
displaced position

g

i =i

(a)First rotation through the (b)Second rotatiop' tl:]lrc?ugh the
angle ¢ about k'=k in ¢ angle § about i'=i; in ¢

¢ in its final
orientation in ¢

{c) Third rotation through the
angle Y about k’=i3 in ¢

Figure 3.14. Euler angles and rotations.

the components x, in ¢ and xj in ¢’ of the position vector x of a particle P,
for example, are related by

xX'=A*x or x=A*Tx (3.156)
under the change of basis

i, =R*i,=A%i, or i,=R*Ti/=A%i (3.157)

P9 q pqp’

3.12.2. Review of the Composition of Infinitesimal Rotations

It was shown in Section 2.7 that consecutive infinitesimal rotations are
vectors; and their composition, therefore, is both additive and commutative.
We are now able to show that the same result may be derived from (3.147b).
It will be shown that the resultant of two infinitesimal rotations R, and R, is
indeed commutative, that is, R*=R,R, =R;R,; and the result will be
reduced to the additive rule (2.22) derived earlier.
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We first observe from (3.150) that for an infinitesimal rotation through
an angle 46, the rotation tensor may be written as

R=1+S 40+ 0(46) (3.158)

to terms of second order in 40. This means that only terms of the first order
in 46 need be retained in the subsequent small angle approximations. Also,
for the skew tensor (3.151a), it follows from (3.60) that

ABSv=A0axv=A40xv (3.159)

holds for an arbitrary vector v. Herein 40 = 40a.

Let us consider two successive infinitesimal rotations R, and R, about
concurrent axes. We find with the aid of (3.158) that the resultant infinitesimal
rotation is given by

R*=R,R,=1+8, 40, +S,40,=1+8S, 46,+8S, 46, =R,R,,

in which terms larger than first order in the angles have been neglected.
Hence, infinitesimal rotations are commutative.

Since R* =1+ S* 46* in accordance with (3.158), it follows from the last
equation and (3.159) that

[40* — (40, + 40,)] xv=0

must hold for every vector v. Thus, the equivalent infinitesimal rotation
satisfies the additive rule derived in (2.22), namely,

A0% = A0, + 40, =40, + 40,  [cf. (2.22)].

This completes the demonstration.

3.12.3. Composition of Rotations about Nonintersecting Axes

In two consecutive, arbitrary displacements of a rigid body, the trans-
lational displacements are independent of the rotations. The rotations may be
compounded separately and their contribution to the displacement may then
be added to the sum of the translations to obtain the total displacement of
any particle of the body. The case when the axes of rotation are concurrent
has been studied earlier. In this section, we shall examine the situation in
which the body receives successive rotations about nonintersecting axes. The
special case of reversed rotations about parallel axes also is described; and it
will be shown how any given displacement may be represented as the sum of
rotational displacements about nonintersecting axes.

We shall begin with two consecutive pure rotations about nonintersecting
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axes. The displacement of a particle P in a pure rotation T, about an axis a,
is given by d, =x, —x =T, x, where x and x, are the initial and final positions
of P from the base point O, as shown in Fig. 3.15a. The subsequent dis-
placement of P in another pure rotation T, about a nonintersecting axis a,
through the base point O’ is given by d, = T, x|, where x| is the location of P
from O'. But the same displacement, by the parallel axis theorem, may be
accomplished by the same rotation T, about a parallel axis through O
together with a translation b, perpendicular to a,. Therefore, as described in
Fig. 3.15b, d,=x,—x,=T,x;=b,+T,x,, wherein x, is the ultimate
position vector of P from O. With (3.87), we have x;,=R;x and x,=
b, + R,x,; hence, x,=b, + R*x, where R*=T* +1=R,R, in terms of the
rotation tensors. Therefore, the resultant displacement due to the rotations
alone is given by

d(P)=x,—x=b,+T*x  with by a,=0. (3.160)

In words, the displacement resulting from the composition of two consecutive
pure rotations about nonintersecting axes is equivalent to a rotation about a line
through the first base point O together with a parallel translation which is equal
to a pure rotation of O about the axis at O'.

If b, and b, denote the translational parts of two displacements whose
rotations are characterized above, then, with (3.160), the resultant dis-
placement will be given by

d*(P) =b* + T*x, (3.161)

where b* =b, + b, + b, is the resultant translational displacement of the base

point O. For the special case when the axes intersect in O, we have b, =0.
If the body is returned to its initial configuration after two successive

rotations about concurrent axes, then by (3.87) we have T*=R*—1=

b.D =T, (x - x, )=T,r is the
displacement of O due to a
pure rotation about O’

Figure 3.15. The composition of consecutive rotations about nonintersecting lines in (a) is equal
to a rotation about @, and a normal translation b, in (b).
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o

Figure 3.16. A rotation about any point followed by a rever-
A sed rotation about another point is a “walking” translation.

R,R, —1=0; hence, R, =R/. In this case, R, is equivalent to a rotation which
is the reverse of R,; and from (3.160), we have the following conclusion: 4
rotation about a line followed by a reversed rotation about a parallel line is
equivalent to a parallel translation perpendicular to the axis of rotation.
Moreover, the translation is equal to the displacement resulting from the first
rotation of the base point on the second axis.

A rotation R, about a point A followed by a reversed rotation R, =R7
about another point B is shown in Fig. 3.16. The displacement of B after the
first rotation is b. Since the second axis is through the displaced point denoted
as B', the reversed rotation produces no motion of B’; and the resultant dis-
placement is a pure translation in which all points of the body experience the
same translational displacement d(P)=b,=Db in accordance with (3.160).
Thus, reversed rotations about distinct parallel lines will produce a dis-
placement that is similar to a common walking motion.

Although the composition of rotations is not additive, under appropriate
conditions, any given displacement may be decomposed into a sum of
rotational displacements about certain lines which generally do not intersect.
To see this, let us suppose in Fig. 3.17a that for a given displacement (3.161)
the resultant rotation about the base point O is decomposed into two con-
secutive rotations R, and R, about concurrent axes a, and a,, such that a; is
any given direction and a, is perpendicular to the translation vector b*. Since
T*=T,+T,R,, (3.161) may be written as d*=T,x+b*+T,X, where
X = R, x is the position vector from O to the final position P’ of the particle P

Figure 3.17. Schematic of consecutive rotational displacements about nonintersecting axes.
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after the first rotation alone. Since a,-b* =0, we may apply the parallel axis
theorem in Fig. 3.17b to find a parallel line through another base point O’
such that d=b* +T,x=T,x’ is a pure rotation about O’, where x’ is the
location of P’ from O'. Thus, as shown in Fig. 3.18, the given displacement
d*(P) is the sum of two pure rotational displacements d, =T,x and d,=T,x’
about O and O’, so that

d*(P)=T,x + T,x". (3.162)

Hence, any given rigid body displacement (3.161) may be represented by the
sum of two consecutive pure rotational displacements about, in general, non-
intersecting axes o, and a,, where a, is any assigned direction and a., is perpen-
dicular to the parallel translation vector of the assigned displacement.

3.124. Composition of Screw Displacements

We have learned that every rigid body displacement may be reduced to a
unique screw displacement. It seems natural, therefore, that successive screws
about nonintersecting axes ought to be reducible to another unique screw dis-
placement. The composition of these screw displacements will be studied next.

For two consecutive screw displacements characterized by (3.141) and
generally having nonintersecting axes ¢, and a,, we have b*=b,, +b,+b,
in (3.161), with b, a,=0. As in the proof of Chasles’ theorem, b* may be
expressed in terms of its vector components parallel and normal to the
equivalent screw axis a*, namely, b* =bX + bX.; and the parallel axis theorem
may be applied to find a line parallel to a* such that T*x* =b}. + T*x, where
x* is the initial location of P from a point O* on the resultant screw axis.
With (3.161), we thus reach the unique resultant screw displacement

d*(P)=Db* + T*x*. (3.163)

Here we have bk = (b*-a*) a* = p*68*a* for the screw translation and the
pitch. In the special case when the component screws are simple rotations
about a point, we recover (3.141) from (3.163). We summarize: Any dis-

Figure 3.18. A general displacement viewed as consecutive
rotations about nonintersecting axes.
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placement of a rigid body, however complex, is reducible to a unique screw dis-
placement.

This completes our study of finite rigid body displacements. In the next
chapter, we shall return to the basic equations for the velocity and
acceleration of a rigid body particle in their important application to the
study of motion referred to a moving reference frame. The equations
developed in this chapter for a change of basis will be useful in some
applications encountered there. And late in Chapter 4, we shall learn how our
fundamental equation for finite displacements of a rigid body may be used in
an elegant derivation of the relative motion relation introduced and applied
earlier throughout that chapter. Otherwise, the reader who in a first reading
may have omitted detailed study of the present work will find no serious dif-
ficulty when these topics are interlaced with some of the examples further on.
The use of tensors in the study of rigid body dynamics in later chapters,
however, may require review of some of the topics on tensors covered here.
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Problems

3.1. Write out each of the following expressions in which the range of the indices,
except as noted, is 3:

(a) v, if v,=e,0,x;
(b) Ty, if T,=A,A,;T;
(c) a, if a, AJbJ+B\,(ck, j=12

3.2. Translate the following sets of equations into index notation, and specify the
range of all indices:

(a) u; =viw, +o3w, +oviw; (b) v, =A;; + A1+ 4335
Uy = V3W, 4+ VIW, + U3 Wy; vy=Ay + Ayp + Azl
Uz =DiWy+ 03wy +0IW5; v3= A3+ A3y + Asy33
(c) 4;,=B,,C 1+ B;,Cy; (d) vfzxf—2x1y1+yf;
A =B,,Cr+ B3,Cyp; ViV =X Xy — Xy Yo~ Vi Xa+ Vi Vas
Az =B, Cy; + By Cyy; U0y = XXy =X Yy — VX + Va2 Vys
2=B,Cy+ B5,Cy; vs=x3—2x,¥,+ y3.

3.3. Substitute the index relations as described below. How many terms would
occur in the result, if you had to write it out? Write out the one having the smaller
number of terms.

(a) a,= M b, into ¢,= N a,.

(b) u;= B;v, and C = p,q, into w, = Cpu,.
(c) u,.—A # Uy Into A—u,cv,t

(d) v;=B; Ay, into 1=v,C;.

() A;=B;Cyinto Ai=4,,C,,.

3.4. (a) How many terms would you have in the equation for C,,,, if you were
to write it out from the formula below?

Ci=A,A4,;A4,4,C,

pgrs*

(b) Show that (A, + A+ Aju) x:x Xk—3A,,k x;x,. How many terms would you
have in the right-hand term, if you were to write it out?

3.5. Use index notation to simplify the following expressions:

(a) Eyktslp q ?

(b) 4,6,,0,6,="

(c) {16 B;+9(B:Br—0u)} BiBi="? where B-p=1.

3.6. If P is a point with coordinates p, in frame ®= {0; i}, show that

p=Pp;cosa;,

where p is the length of the segment OP and «; are its direction angles in &.
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3.7. If OP and OQ are line segments with direction angles , and ,, respectively,
in frame ¢ = {O; i, }, prove that

cos i =cos a,cos f§;
where ¢ is the angle between OP and OQ.

3.8. (a) Derive (3.10), and show by its expansion that it yields the familiar result
(A.11) in Appendix A. (b) Verify for a few sets of indices the following &6 identity
=0,6.—06,0

& P Qqrip?

ik Epg
and use this result together with (3.10) to derive the expansion formula (A.14) for the
vector triple product. (c) Find identities for ¢,,,£,,, and &,,,£,,,.

3.9. (a) Use index notation to show that in an unconstrained spatial motion of a
rigid body there is in general no point having zero velocity, but that in general there
exists one point, and only one point, with instantaneous zero acceleration. As
indicated in Problem 2.71, however, under special constraints there may be one or
more points with zero velocity. (See also Problems 2.72, 2.81, and 2.82). (b) Find in the
frame ¢ = {O; i, } the instantaneous location of the unique point of zero acceleration
at the instant when a, =a,i, ® = wk and @ = &, i,, referred to ¢.

3.10. Prove that the tensor product a®b of vectors a and b is in fact a tensor.
Derive the relations (3.23).

3.11. Prove that the product of two tensors S and T defined by the rule (3.36) is
indeed a tensor; and show that its components relative to an orthonormal basis e, are
determined by the product of the matrices of these tensors. Further, let U be another
tensor and /2 a scalar. Establish that the following rules hold for the products of ten-
sOrS:

(a) (ST)U=S(TU);

(b) A(ST)= (JS)T =S(T);
(¢) S(T +U)=ST + SU:;
(d) S+T)U=SU+TU;
(e) IT=TI=T.

3.12. The transpose T7 of the tensor T is defined by (3.42). Prove that T7 satisfies
(3.11) and hence really is a tensor; and show that transposition obeys the rules (3.43)
and (3.46).

3.13. Let p, q, u, and v be vectors. Show that
(PO®YPURV)=(q u)(pV).
Hence, show also that for an orthonormal basis e,
(e;®e;)(e,®e)=5,¢Re,.

Use the last relation to derive the component representation for the product ST of the
tensors S and T.

3.14. The inner (scalar) product of tensors S and T is defined by S- T =tr(S'T) =
tr(ST”). Show that for vectors p, q, u, and v

(P®q) (uv)=(p-u)(q-v)
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hence, also for the orthonormal basis e,
(e;®e;) (e, ®e)=0,6,.

Apply the last relation to show that S-T= Sk{ Ty, Thus, in particular, show that the
magnitude of a tensor, defined by |T| = (T - T)"?, is simply the square root of the sum
of squares of the components of T. Find the magnitude of the identity tensor using
only index notation. Determine the magnitude of an arbitrary orthogonal tensor Q.

3.15. Derive equations (3.51)-(3.54).

3.16. Use (3.69) to determine the vector Te; as a function of 6 and a. Apply the
result to derive (3.73) and (3.75).

3.17. Derive Rodrigues’ formula (circa 1840) for the displacement of a particle of
a rigid body in a rotation about a fixed line, namely,

d(P)=tan(0/2)a x (X + x),
in which % denotes the terminal position of P from the origin on the axis of rotation

and the other terms are the same as those in (2.7).

3.18. The function tan(f/2) enters Rodrigues’ formula in the previous problem.
Show that in terms of the symmetric and skew parts of the rotator T
g_ [-2t(T%)] vz _ ATHL+T5+ T%x]l/z

tan - = = .
27 4+4uTs 4+ T, + Tyt Ty

Note that the square of a tensor is defined by T?=TT.

3.19. An electric motor must be arranged to turn a flood control valve through an
angle 8 <« in a right-hand sense about a fixed directed line through the origin and the
point P=(1,2,0)ft in frame @ ={0;I,}. An engineer has shown that any design is
acceptable for which T,,= —2/5, T,,= —1/10, and T;= —1/2 are satisfied in &.
Determine the angle and axis of rotation, and compute the remaining six components
of T in &.

3.20. Find the matrix of the rotator for the rotation of the control link described
in Problem 2.6. Use the result, conversely, to compute the angle and the axis of the
rotation. Compute by matrix methods the displacement of the pin P.

3.21. A cardboard box is initially positioned with its centroid C at the place
(4,6, 7)ft in frame &= {O;1,} fixed in a packaging machine. The empty carton must
be transported by a rotation about a line through the point P=(2,0, —1)ftin d to a
new configuration where the box is filled and sealed. The rotator required for the

operation is specified by
| 4v3-8 —(1+3)  5-3
T=3 5-U3  3(/3-2) 5-43)|.
—(1+/3) H11-4/3) /3-2)

Determine the rotation angle, and find the equation in @ of the line of rotation. What
is the displacement of C? Find the location from C of the point T which initially was at
the top of the container at the place (4, 6, 9) ft in &.
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3.22. An alternative design for the door panel mechanism described in
Problem 2.6 requires the rotation

1 0 0
R=|0 12 -3
0 V32 12

The guide pin P initially is at the place (1, 1, 1) ft from O in &. Determine the angle of
the rotation and axis of the shaft OA. Find the displacement of P.

3.23. The matrix of a rigid body rotation tensor is given by

3 5 4
R£—35—4

10420—3\/5

referred to ¢ = {0;1i,}. (a) Find the angle and the fixed axis of rotation in ¢. What is
the terminal location and the displacement in ¢ of the particle P initially at x =4i—

2j— 3k ft from O? (b) Find the matrix of the rotator and use it to compute the dis-
placement of P. Compare the result with the previous solution.

3.24. A rigid body is rotated about a line through the point C at (1, 3,5)ft in
& ={0;1,}. The rotation tensor in & is

N NG NG
R= 0 Sz -2
-J22 J2s Jeja
Determine the final position in @ of the particle P whose place initially was X =
\/511 +(2 \/3/3) I, + 2L, ft. What is the displacement of P? Find the axis and the angle
of rotation of the body in &.

3.25. A rigid body is rotated about a line through the point 4 at (2,5, —7)m in
@ = {F; 1, }. The rotation matrix in the frame ¢’ = {4;1,} is given by

0 —/22 —-/22
R=|1 0 0

0 —/22 22

(a) What is the final position relative to @' of the particle P initially at X=2I, +
I, —1I; min @? (b) What is the final location of P in @? (c) Determine the displacement
of P referred to @'. (d) Find the angle and the axis of rotation referred to @’. What is
the axis when referred to @?

3.26. The Cartesian coordinates of a point P in ¢={0;i,} are given as
3 ﬁ, -2 \/5, 5). Find the coordinates of the same point in ¢' = {O; i, }, if ¢’ has the
orientation relative to ¢ shown in the figure.

Problem 3.26.
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3.27. A change of basis is described by the basis transformation tensor

Q=3(—e, +ey,+2e5)— \/5"-(12)

referred to the initial frame = {O; e, }. Is this a proper or an improper orthogonal
transformation? Find the basis transformation matrix, and sketch the orientation of
the transformed frame ¥’ = {O; e} }. What can be said about the nature of frame /'?

3.28. The rotator (3.83) describes the finite rotation of the satellite tracking
antenna shown for Example 2.1. Construct the basis transformation matrix for a
change of frame from & = {F;1,} into @ = {F;I;} produced by a right-hand rotation
through 45° about the K =K’ axis. (a) Use the tensor transformation law to find the
matrix T’ of T referred to &’; and determine from the result the angle and axis of the
rotation relative to @’. Compute det T in & and &'. (b) Apply the vector transfor-
mation law to the axis in (3.81c), and compare the result with that found previously.
Do these values agree physically with the description in Fig. 2.5?

3.29. A hot, rectangular steel ingot must be transported by a machine to a new
location and orientation. A point on the top of the ingot is located at A=
(20, 10, 20) ft, and the ingot has its center at C=(20, 10, 10)ft in its initial con-
figuration relative to a fixed reference frame &. In its final position the center is at
O’ = (40, 30, 30) ft and the ingot has experienced a right-hand rotation of 90° about i,
followed by a similar rotation of 180° about i of the parallel spatial frame ¢ =
{0";i,}). Find the equivalent Euler rotation of the ingot. What is the total displacement
in @ of the point A?

3.30. Show that the relation (3.132) for a simple rotation is equivalent to (2.7).
Begin with (3.132) and derive by vector methods the finite displacement equation

d(P)=siny ax§+ (1 —cosy)ax(axg),
in which & is the position vector of P from an arbitrary point on the axis of rotation.

3.31. Compute the angle and the axis of the simple rotation of the guide pin P
whose initial and final position vectors x and % are given in Example 3.5. How do
these values compare with those found in the example for the Euler rotation about the
fixed line?

3.32. A rigid body is rotated through 45° about a fixed line x=2y=3z in the
right-hand sense of increasing values of the coordinates along the line. Determine the
displacement of the particle P at the place (—1,2,0)m in ¢ = {O;i,}. Find the simple
rotation that yields the same displacement of P. Explain the unusual nature of the
result.

3.33. A rigid body particle B, which initially is at the place (1,2,3)ft in &=
{F;1,}, moves to (3,2, 1) ft at O" in &. The body also performs rotations about O’ that
are equivalent to

01 0
R= 0 0 -1
-1 0 0

The initial location of another particle P is (4,5, 6)ft in &. Determine the final
position of P relative to the parallel spatial frame ¢ = {O’;i,} and relative to ¢. What
is the projection on the axis of rotation of the resultant displacement of a body point Q
whose initial place in @ is (2, 4, 6) ft? What is it for P?
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3.34. An equilateral triangular box of side 3 ft and depth 1 ft has the initial orien-
tation shown at 4. The box is displaced to the configuration B such that the face OPQ,
initially in the xy plane of ¢ = {O; 1.}, is parallel to the yz plane of ¢ at B. (a) Find the
equivalent Euler rotation of the box. (b) What are the displacement and terminal
position vector in @ = {F; I, } of the point ? (¢) Determine the position vector of P at
B in ¢; and find the displacement of P in &.

Problem 3.34.

3.35. An envelope must be transported to a new location and orientation suitable
for zip code reading in a mail sorting machine. The center O of the envelope, initially
at B =3I+ 5J + 8K cm, is moved to B =8I+ 10J + 13K cm in the machine frame @ =
{F;1,}, and the envelope has undergone right-hand rotations of 45° about the i, axis
followed by 90° about the i, axis of the spatial frame ¢ = {O;i,} parallel to &. The
design of a suction device to move the envelope requires that the equivalent angle and
axis of rotation through O be provided. Determine the data required, and furnish the
final location and total displacement in & of the point P which was at the place X =
31+ 5J + 13K cm initially.

3.36. Recall the rotator properties (3.124). Prove that for an arbitrary
unconstrained displacement of a rigid body in space, there exists, in general, no point
whose displacement may be zero. See also the next problem.

3.37. In every plane displacement of a rigid body there is always one and only one
point whose displacement is zero. This point is the unique center of rotation for the
plane displacement of the entire body. Thus, consider the right triangle whose base is
one-half of the displacement vector b of any assigned base point O, and whose
hypotenuse is the position vector r of the center of rotation O* from Q, as shown. The
angle, of course, is one-half of the angle 0 of the rotation of the body about the axis @
normal to the displacement plane, and b-a=0. Apply this geometry to prove by a vec-
tor algebraic construction that the unique location of the center of rotation in the
plane displacement is given by

1 sin
r—§|:b+—l_cosguxb].

0"

b Problem 3.37.

N[ =
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3.38. The rectangular plate shown in the figure undergoes a right-hand rotation of
45° about a normal axis through A, followed by a reversed rotation about a parallel
line through D. Determine the parallel translation by which the same resultant dis-
placement may be effected. Verify the result graphically.

J

Problem 3.38. 2 —

3.39. The plate shown in its initial configuration in the previous problem
undergoes a displacement such that the final position of 4 in &= {F,1,} is
(3, —2,0) ft, and it also suffers a right-hand rotation of 30° about an axis through 4
normal to its plane. Compute the location of the center of rotation. Verify the result by
a graphical construction.

3.40. A bottling machine is to be designed to operate continuously as follows.
Two empty bottles are received by a carrier at 4 shown in the diagram. The filling
operation is to begin after the carrier has turned 90° counterclockwise to the position
at B=(4, —2,0) ft in @ = {4;1,}. The capping operation starts at C where the carrier
has been rotated an additional 90°, and the bottles subsequently are removed from the
machine when the carrier is at D and rotated 90° more. The design is to be based upon
a single continuous circular motion of the carrier. Compute the location of the center
O of rotation, and thus determine the radius r of the carrier table. Find the locations C
and D of the carrier for the capping operation and the removal of the bottles from the
machine. Show in a carefully drawn sketch how this information may be obtained
graphically.

Bottle
Removal

%%

D
r
O \0
]
1

Capping
Operation

Empty
Bottles

Cj@
é@
@i@
Filling
Problem 3.40. Operation

3.41. Let the rotation matrix be defined by the transpose of the matrix given in
Example 3.13, while all else remains the same. Rework the example, and describe the
screw displacement. What differences do you find? Is this displacement the same as a
reversed screw?

3.42. Rework the Example 3.13 with the point at (3, —2, —4)cm as the base
point O, while all else remains the same. Are the results the same? Find the position
vector of the new center of rotation from the center of rotation O* found in the
example.
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3.43. Reduce the displacement described in Problem 3.33 to a screw displacement.
With B as the base point, determine the center of rotation and the pitch of the screw.
Find the screw translation and its magnitude. What is the axis and the rotation of the
screw? Solve this problem two ways: (i) by application of the linear system (3.141b),
and (ii) by use of (3.146).

3.44. Repeat the work in the previous problem with the particle Q as the base
point. What differences do you observe?

3.45. A rectangular container, initially situated with its center C at (1,2, 3)ft in
the fixed frame @ = {F; 1, }, as shown, is to be transported in a packing machine to a
new configuration determined as follows. The center C must be moved to (3, 4, 5) ft in
@; and in its final configuration, the container must be rotated about a fixed axis
through C. The rotation is equivalent to consecutive right-hand rotations of 90° about
each of the i, and the i, axes of the spatial frame ¢ = {C; i, }, in their turn. Determine
the angle and axis of the equivalent rotation required, and find the displacement of a
point T whose initial location at the top of the container was (1, 2, 4) ft in @. Locate
the center of rotation of the equivalent screw displacement with respect to C, and
characterize the screw.

Initial
Configuration

Problem 3.45.

3.46. A point A of a rigid body moves from its initial place at the origin to the
place (1,2,3)m in frame &= {F;I,}. Another particle P is initially at the place
(1,4,6)m in &. Concurrently, the body executes certain rotations relative to & that
are equivalent to

1 2 1 2
R=§ -2 21
-1 -2 2

Find the equivalent screw displacement, i.e., find the screw axis and angle of rotation,
the magnitude of the screw translation, the pitch of the screw, and the location in & of
the center of rotation with respect to 4. What is the terminal location of P in ¢?

3.47. A rigid body executes three successive right-hand turns about the i, axes of
the spatial frame ¢ = {O; i, }. The first rotation is 45° about i, the second is 90° about
. and the last is 180° about k. Construct the three rotation matrices in frame ¢, and
find the equivalent Euler rotation. Check your result by geometrical construction of
the basis transformation matrix relating the imbedded body frame ¢’ to ¢.

3.48. Determine by matrix multiplication the resultant Euler rotation equivalent
to consecutive 90° right-hand rotations of a rigid body about the i and k axes of the
spatial frame ¢ = {O;i }. Find the Euler axis and angle of rotation. Apply the same
rotations in reverse order, and repeat the previous part. Are the results the same?
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3.49. A rigid body undergoes three consecutive proper rotations about axes of the
body frame ¢’ = {0O;e}}, which initially is coincident with the spatial frame ¢ =
{0;e,}, such that R,:e, » e}, Ry:el »eZ, and Ry el >el=e;, where e}, n=1,2,3,
denotes the successive body bases. Find the resultant rotation matrix referred to the
body frame ¢’ in its terminal configuration in ¢. Retain the usual definition of the
basis transformation matrix.

3.50. The three rotations of the body about successive positions of the body axes
as described in the previous problem are given as follows: R, is 30° about e}, which
initially is coincident with e, ; R, is 90° about the e} body axis in its new orientation in
¢; and R; is 90° about the e} body axis in its new orientation resulting from all earlier
rotations of the body in ¢. What are the resultant angle and axis of rotation of the
body referred to the body frame ¢’? Check your result by constructing the resultant
basis transformation matrix relating ¢’ to o.

3.51. A rigid body executes three consecutive proper rotations of 90° about each
of the three axes of the spatial frame ¢ = {F;i,}, each in its turn. Determine the
resultant rotation by two methods: (a) Construct a diagram relating the initial and
final orientations of the body frame, and find the basis transformation 4*:i,— i,
(b) Construct the rotation matrices R,, R,, and R, with respect to ¢, and find the
resultant rotation matrix R* in ¢. Are the results from (a) and (b) the same? Compute
the resultant angle and axis of the rotation; and draw a sketch showing ¢, ¢’, 6%,
and a*.

3.52. Repeat the previous problem for consecutive 90° proper rotations about the
axes of the body frame ¢’ = {F; i;}, each in its turn. The matrices in part (b) should be
referred to @'. Are the results the same as those found in the last problem? (See
Problem 3.49.)

3.53. A rigid body suffers three successive proper rotations as follows: (i)45°
about the i, axis of the spatial frame ¢ = {F;i,} followed by (ii) a 45° turn about the i}
axis of the body frame ¢’ = {F;i } in its new position, and (jii) a 90° rotation about
the i; axis of ¢. Find the resultant Euler rotation with respect to ¢.

3.54. The solar panel of a spacecraft suffers two rotations about axes @, in the
spatial frame ¢ = {O; e, }, as indicated. The first rotation is 90° about the panel axis
a,, and the second is a 180° turn of the satellite about the axis a,. Both axes are in the
23-plane. Describe the resultant rotation of the panel in ¢; and find the final orien-
tation in ¢ of the body frame ¢'={O;e;}, which initially was coincident with ¢.
Sketch the final orientation of ¢’ in ¢.

(O NSNS
e

Problem 3.54. €2
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3.55. The attitude of a spacecraft is adjusted by consecutive rotations produced by
jet thrust nozzles. The first rotation is through a right angle about the axis a, in the
vertical plane of a reference frame ¢ = {O; i, } oriented with respect to the earth; and
the next rotation is through a straight angle about the axis @, in the horizontal plane
of frame ¢, as illustrated. Find the resultant axis and angle of rotation of the
spacecraft.

[45)
0,=180° Problem 3.55.

3.56. Three consecutive, right-hand rotations about the i, axes of a fixed spatial
frame @ = {F; i, } are required to bring a rigid body into its final orientation in ¢. The
body is held rigidly by a robotic device that controls its rotation. The first rotation is
through an angle ¢ about i,; the second is through an angle 6 about i,; and the third
is through an angle ¢ about i,. (a) Find the resultant rotation matrix. (b) If ¢ =45°,
6=30°, and ¥ = 60°, determine the angle of the Euler rotation and the direction angles
of the resultant axis in ¢. Illustrate the results in a sketch.

3.57. The machine that controls the robot in the previous problem executes a
further reversed resultant rotation of the rigid body/robot assembly about an axis
through the particle P at x(P) =i, + 2i; units in ¢. Find the magnitude and the direc-
tion in ¢ of the displacement of P, and describe the displacement of the body. Sketch
the results.

3.58. Apply (3.152) in the spatial frame ¢ to derive the matrices R, for the three
consecutive rotations through the Euler angles {4, 6, y } about axes a, = {k, i}, k'}, as
described in the text, all referred to ¢. Show that the resultant rotation determined by
(3.147b) is given by the matrix product R* = R, R, R, with respect to ¢; and show that
the product yields the result (3.155) derived differently in the text. It may be helpful to
notice from (3.147a) that each new axis of rotation may be computed from its former
direction by multiplication of the rotation; hence, i} = R,i yields i! in ¢, for example.

3.59. Review the theory of finite rigid body displacements by completing your
part in the following dialogue.

A Dialogue Concerning the Kinematics of a Rigid Body.

A certain machine must be designed to transport sealed rectangular boxes from
one conveyor belt to another at the rate of 20 boxes per minute. You have obser-
ved that in accordance with certain design specifications the change of location
may be accomplished in several simple steps; and with the aid of the diagram
shown below, you begin to explain the procedure to your supervisor, who fre-
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(**)

Problem 3.59.

quently interrupts your explanation for more information. Your conversation
begins.

You: Let’s start with a reference frame ¢ = {F;i,} fixed in space, and call this
the spatial frame. And let’s take another frame ¢’ = {O; i} } imbedded in the box
with the origin O at its centroid and initially coincident with the spatial frame
at F. We'll call it the body frame. The displacement described in the specs can be
accomplished like this: first rotate the box 90° counterclockwise about the i, axis
of ¢, then 90° about the i, direction in the same way. Now translate the box a
suitable unit distance along the i, axis, and, finally, move it the same distance
along the i, direction. This brings the box to the desired location.

Boss: Is it possible, since the angles are the same, to do the rotations in reverse
order and have the same result?

You:
Boss: Really? Why does that happen?
You:

Boss: Of course! I should have remembered that. Can you show me how you
might replace these two rotations by a single rotation about 0? I'd like to know
the equivalent angle and axis required.

You: Sure; that’s not hard. We can use the resultant rotation tensor R* to
calculate the rotation angle from the relation ____ . Then the axis is
obtained from the formula . Actually, the total displacement is
related to the rotation tensor through the rotator equation

T*=S8*sin 0* + (1 —cos 0*)(a*®a*—1)

where 0* is the equivalent....

Boss: Whoa! Let’s put on the brakes so I can catch up. 1 got lost in the stars.
I'm familiar with vectors and matrices, and I know a little about tensors; but I've
never seen these tensor formulas before. Outline for me how you get this stuff
and explain your notation so I can get a general picture of what this is all about.
Start with your ..ah..ah... rotator.

You:

Boss: That’s much clearer! I notice that the equation you got a moment ago for
the particle displacement enables us to write your T as a vector operator:

T=sinfax[ J+(1—cosBlax(ax[ ]).

It occurred to me that this might be useful.
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You: Well, yeah, but this is really the same tensor thing I wrote down before.
You're right about its utility though; from your form of T we can see straight off
that Ta =0, for example.

Boss: Sure; that’s what prompted my remark. But what does it mean, you
know... physically? And how does R get into the picture? And what about those
stars? And....

You: Talk about brakes! Let's back up to T. Physically, the equation says that

Boss: OK. That makes sense. But now I'm wondering about your choice of
origin on the axis of rotation. Intuitively, I'd say it doesn’t matter. But can you
show me that the displacement due to a rotation about the fixed axis doesn’t
depend on your choice of reference point on it? It just seems so obvious.

You: It really is. You can see it from

Boss: Well, this is all very interesting; but we seem to have drifted from our
main problem. When I interrupted before (sece ** above), you were telling me
that you needed something more than T* to get the answer. And you still
haven't explained the stars.

You: The stars only serve to distinguish the resultant rotation terms from the
others. And it’s T* that we want to find; but, so far, we haven’t related it to the
data based on the design specs. To do this, we need to relate the different frames.

Boss: The different frames?

You: Yeah. You'll remember that we started out with two reference frames; one
fixed in space, the other fixed in the body. We haven’t used these before. The dis-
placements I described at the beginning were with respect to the spatial frame.
Notice that after a displacement of the body, a particle has a new spatial
location, but its location with respect to the body frame is unchanged. We can
use this simple fact to relate a rigid body rotation about a point to the rotator
for the fixed axis that we discussed before.

Boss: I vaguely recall my old math prof, Dr. Whitmore, a tiny fellow who the
students dubbed Wee Willy Whitmore, mentioned this in connection with an
important theorem due to...ah...ah... It’s on the tip of my tongue—oh, what is his
name? He was a prolific, 18th century mathematician that Wee Willy just loved
to talk about.

You: You probablymean |

Boss: That’s it! He corresponded with another guy named Bernoulli about
bending of slender beams, and in the process of studying this problem developed
special topics in applied mathematics; and he created some fundamental prin-
ciples of mechanics of solids and fluids. In fact, he developed a great deal of the
stuff that engineers use today. I guess I'm beginning to sound like his press agent
Willy. Anyway, I don’t remember his theorem on rigid rotations, so perhaps you
could refresh my memory.

You:

Boss: That really is a remarkable result. But 1 still don’t see its specific practical
value here.

You: Let me show you the proof, then I'm sure you'll see how this theorem leads
to information relating the rotation tensor R* to our problem data.

Boss: OK. But just sketch the major ideas. I'm anxious to get the answer to our
problem before going to the management meeting this morning.
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You:

Boss: You were right. Now that we have this result, I do see the connection
between the resultant angle and axis of rotation and the other matrices you've
described. How did you know that the trace of neither the rotator nor the
rotation tensor depends on your choice of reference frame?

You:
Boss: 'm convinced. Let’s put this to work to get the answer to our problem
(see * above).

You: I'll compute the resultant rotation you asked about earlier. I can now
relate the two frames to find ___ ; and then use the formulas
_ . which I wrote down before, to get the equivalent axis and
angle you wanted:

Boss: That was slick. Of course, you realize that you haven’t accounted for the
unit translations.

You: That’s the casiest part. From that important rotation theorem 1 proved
before, we know that the most general displacement of a rigid body is equivalent
to_ . So, on this basis, I can give you the total displacement of
any point of the body.

Boss: Then show me the general result; and afterwards demonstrate it for the
centroid and the point 4 indicated in your sketch.

You:

Boss: I'm impressed with your thorough understanding of finite rigid body dis-
placements. I haven’t looked at this stuff for years. Your tensor algebraic
methods actually are easier to follow than the longhand algebraic and
geometrical proofs that Wee Willy was so fond of, so this has been an enlighten-
ing review for me. I can see from your analysis how the displacements of all
points of the body can be easily found. You have a good start on this problem.

You: Start?

Boss: Yes. I'd like you to consider the possibility of producing the same dis-
placement of the body by other means that might allow the design group to
come up with the simplest possible mechanism for our purpose. For the design
specs you used, what would be the simplest possible translation and rotation
that could be applied? And how would it be executed?

I've got to leave for the management meeting; but if you need a few ideas to
clarify this, you might consult Mr. Chasles, who I understand has had con-
siderable experience with problems of this type. You might also look into the
possible velocities and accelerations that may be involved. As you know, the
device must handle 20 boxes per minute; but the design group would like us to
look at the possibility of improving the rate for other potential applications. I'll
check back with you later. You're doing a good job.

You:
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Motion Referred to a Moving
Reference Frame and
Relative Motion

4.1. Introduction

Thus far in our studies, the motion of a material point has been referred
mainly to an assigned reference frame that often we thought of as being “fixed
in space.” We have seen, however, that it is sometimes more convenient to
refer the motion to a reference frame which itself is in arbitrary motion
relative to some (possibly moving) assigned frame. To trace the motion of a
long-range ballistic missile or space rocket, for example, it is essential that the
motion of the earth be taken into account. In such cases it becomes necessary
to refer the body’s motion to a moving reference system imbedded in the
earth; and, in this instance, a reference frame fixed in the distant “fixed stars”
may be chosen as a suitable assigned reference frame with respect to which the
earth’s motion is known.

Sometimes several reference frames in motion one relative to the other
are encountered in a problem. The motion of a maneuverable target object in
retreat from a pursuing rocket fired from an aircraft clearly is perceived dif-
ferently by the pilot in the aircraft reference frame and by the rocket guidance
control system in the rocket reference frame. In this instance, the motion of
the target object is referred to two frames, and it would be of interest to know
how the target’s motions as seen by the two “observers” are related.

It is an easy geometrical problem to refer a vector, such as velocity or
acceleration, to any desired frame, since this means only that the vector is
represented in terms of the basis that defines the frame. This was
demonstrated earlier in the easy Example 3.7 and in the Example 2.10 in
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which the velocity was referred to an imbedded reference frame. The intrinsic
representation of a motion, studied in Chapter 1, is another case where the
velocity and acceleration of a particle were referred to a moving frame. In
general, if any vector associated with the motion of a particle is known in one
reference frame, then we may determine by orthogonal projections its com-
ponents along lines parallel to the basis of any frame that bears a known
orientation with the assigned one, whether the frames are moving or not. This
kind of construction may be used to relate the motion of a material point as
seen by two observers associated with these frames; and this procedure also
will enable us to determine the influence of the motion of the reference frame
on the motion of a particle apparent to a moving observer. In addition, we
shall learn the extent of the error committed when the effect of the motion of a
moving frame, such as the earth, is ignored.

Equations relating the angular velocities and angular accelerations of
several reference bodies will be derived in this chapter. Generalized formulas
that relate the velocities and accelerations of a particle in two reference
systems will be constructed and applied to a variety of problems. These
general equations will include most of our earlier results. Some useful exam-
ples of motion referred to special moving frames that are convenient for
problems where cylindrical or spherical coordinates are appropriate also will
be developed. Special topics that use matrix and tensor methods described in
Chapter 3 will be presented at the end. But, first, we must learn how to com-
pute the rate of change of a vector which is referred to a moving frame. Let us
begin with an example.

Frame o= {F; It
Fixed in the Ground

A Frame v, = (F;i,)
%F Fixed in the Table 37
W s

Figure 4.1. A motion x{P, ) of a gear particle P referred to the moving frames ¢, and ¢,, and to
the fixed ground frame ¢,.
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4.2. An Introductory Example

A particular reference frame usually is chosen to simplify the form or the
derivation of equations and to ease calculations. A vector v, for example, may
be a constant vector in one reference frame, and a function of one or more
variables in another. Therefore, the derivatives of the same vector referred to
different reference frames will be different. This will be illustrated in the
following example.

The Fig. 4.1 of the motor on a rotating table shows three reference
frames: the frame @, = {F; I} is fixed in the ground E; frame ¢, = {F;i,} is
in the table T; and frame @, = {O;i,} is imbedded in the gear G of radius r. A
point P on the rim of G has a position vector x from its center. Of course, in
each of these frames the same vector x has a unique representation x = x, e, in
which the scalar components x, describe the behavior of x when referred to
the reference frame with basis vectors e,. But in another frame, i.e., when x is
referred to a different basis, the components will be different. In the present
case, it is easily seen from the geometry in Fig. 4.1 that

x =rk’ is a constant vector in @,; (4.1a)
x=r(sinfi+cosOk)=x(0)in ¢@; (4.1b)
x =rsin O(cos Y I +siny J)+rcos 0 K=x(8, y) in ¢,. (4.1c)

We thus see that the position vector x is a function of ¢ and 6 in ¢,; it
depends on 6 in frame ¢,; and in ¢,, it is a constant vector.
It follows from (4.1) that the rate of change of x with respect to 6 is given

by
0in ¢,;
0x . .
B r(cos@i—sink)in ¢ ;
rcos 8(cos Y I +siny J)—rsin 0 K in ¢; 4.2)

and its change with respect to ¥ is

0in ¢,;
£= Oing,;
rsin (—sin ¥ I+ cos ¥ J) in ¢,. 4.3)

Thus, assuming that the time 7 is the same for all observers, with the use of
(4.2) and (4.3) in which 8 =0(r) and  =(¢), we obtain the following time
rates of change of x in the frames indicated:

dax .
E=0m Ps, (4.4a)
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dx 0x . .. .
Z:556=r0(cosHl—smf)k)m(p,, (4.4b)
dx 0x . 0x . . . 3 o
— == +w,/,:r9cos0(cosl//I+sm1ﬁJ)—r851n9K

+ ri sin (—sin I+ cos y J) in @,. (4.4c)

Notice that the constant vector k' seen by an observer fixed in the gear
frame ¢, is perceived as a time-varying vector

k'(z)=sin 6(¢)i+cos B(1) k (4.5)

by an observer in the table frame ¢, because the angle 8 = 0(¢) that k’ makes
with directions i and k fixed in frame ¢, changes with time. Consequently,
dk'/dr =0 for the observer in ¢,, whereas for the observer in ¢,

dk'(1)
dt

= 0(cos 0 i— sin 0 k), (4.6)

in which 0 is the angular speed of the gear relative to the table. We thus see
that (4.4b) also may be derived from (4.1a) directly. The reader may show
that the last of (4.4) may be obtained in a similar manner from (4.1b). It will
be seen that the time derivatives of i(r) and k(¢) will involve the angular speed
of the table relative to the ground. The general manner in which the angular
velocity of a moving reference frame affects the time derivative of any vector
referred to that frame will be studied in the next section.

The increasing complexity of the expressions in (4.1)-(4.4) underscores
the simplicity which seems to be achieved when the position vector for the
motion is referred to a moving reference frame, the simplest relations being
those obtained for the frame ¢, imbedded in the gear. We shall see more of
this as we move ahead. Of course, the three time derivatives (4.4) of the same
vector referred to different frames have distinct meanings, and for this reason
it is useful to introduce special notations for clarity. This will be done in the
next section, where we shall derive the simple, general formula for the
derivative of any vector referred to a moving frame.

4.3. Derivative of a Vector Referred to a
Moving Reference Frame

Any reference frame having a motion relative to a preferred, assigned
frame is called a moving frame. Thus, in this sense, the preferred frame often is
thought of as being fixed in space. However, it is not necessary to impose the
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Preferred Frame

ult) = U (ol =u (i (1ind ult) = u (i iny

Figure 4.2. A vector U(¢) referred to a preferred and to a moving frame.

condition that the preferred frame be at absolute rest in space. In fact, the
term “absolute rest” is without meaning in our universe; so let us agree that
the term “absolute” is to be applied only in reference to quantities referred to the
preferred frame, whether it be fixed in space or not. The terms “preferred” and
“moving” will be used only in the simple relative sense described above; and,
whenever it may be convenient, we may reverse our choice of labels for the
two frames and achieve parallel results. We shall assume that all observers
employ the same time reference, i.e., all observers use the same standard clock.

Let the preferred frame be denoted by @ = {F;I,} and the moving frame
by ¢ = {O;i,}. Suppose that the frame ¢ has angular velocity o, relative to
the frame @ and translational velocity v,,, as shown in Fig. 4.2. Let U(¢) be
any vector-valued function of the time 7. The scalar components of U(z) are
U,(1) when referred to the preferred frame @ and u,(f) when referred to the
moving frame ¢ at time 7. Thus,* U(¢) = U,(¢) I, is the representation at time
t of the vector U(z) as seen by the observer F fixed in frame @ and referred to
that frame, whereas the relation U(1) = u,(¢) i,(¢) is the representation of U(¢)
as seen by the same observer F but referred to the moving frame. Of course,
the basis vectors i, have always the direction of the moving coordinate axes,
so that apparent to an observer O in frame ¢, the vector U(¢) at time ¢ has
the same representation U = u,(t) i, ; however, as indicated, the moving obser-
ver perceives no change in i, with time 7. Consequently, the rate of change of
U(¢) will appear differently to the two observers. At time ¢ 4 At, the preferred
observer F sees a change in u,(z) and a change in i,(z), but only the change in
u,(t) is apparent to the moving observer at O in ¢. We wish to relate the rates
of change of the vector U(z) as seen by these two observers.

Consider the vector U(f) = u,(¢) i,(¢) as seen by the preferred observer F

* The summation rule introduced in Section 3.2.1 is used here.
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and referred to the moving basis i,(7). Evidently, the rate of change of U(7) in
@ when referred to the moving frame is then given by

di (1)
dr -

dU(1)  du(t)
dt dr

i () +u () 4.7)

To determine di,(t)/dt, we recall that i,(¢) is a unit vector along the kth axis
of the moving frame. Since the moving frame is rigid, we can treat the end
point @ of the vector i,(r) as a point of a rigid body, as shown in Fig. 4.3.

Then the velocity of Q relative to O in the frame @ is given by (2.29), in which
we put x(t)=i,(¢); hence,

dig(1)
dt

=0, X . (4.8)

Upon substituting (4.8) into (4.7), we get in @

dU d
dtmz u:;,([)ik(t)+mfxuk(t)ik(t)- (4.9)

Finally, let us introduce a special partial differentiation symbol §/5¢ defined by

oUn) _du(t); () (4.10)

ot dt

That is, 6U(r)/dt is the rate of change of the vector U(¢) as though the basis
vectors i (f) were fixed. Therefore, it represents the rate of change of U(r)
apparent to an observer O in frame ¢ at time 1. Putting (4.10) into (4.9) and
writing U(7) = dU(t)/dt, we see that the total (or absolute) time rate of change
of the vector U(t) as seen by the preferred observer, but referred to the moving
frame, is given by

U(t)=5l;£t)+wf(t)xU(t). (4.11)

Figure 4.3. Schema for the calculation of
di,(t)/dt in frame .
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We note that when the vector U(¢) is fixed in the moving frame, the
moving observer perceives no change in U(7); hence, 6U/6t =0 and

U(1) = o, (1) x U(2). (4.12)

This result extends (4.8) to any vector fixed in the moving frame.

The vector §U(z)/dt, the time rate of change of U(¢) in ¢, is called the
apparent time rate of change of U(t); and @, x U, which is due to the relative
rotation of the moving frame, is called the convective time rate of change of
U(t). Notice that the translational velocity of frame ¢ has no influence on the
rate of change of U(¢), for if there were no rotation of the moving frame, the
basis vectors i, would have constant directions in frame @; therefore, they
would be the same for both observers. We may thus summarize the result
(4.11) as follows: The absolute time rate of change dU(t)/dt of a vector U(t) in
the preferred frame is equal to the sum of the apparent time rate of change
oU(2)/dt in the moving frame and the convective time rate of change o, x U(t).

The formula (4.11) applies to any vector U(¢) that is referred to a moving
reference frame having angular velocity o,; consequently, we see that the dif-
ferential operator d/dt when operating on any vector referred to a moving
frame must be replaced by the following linear differential vector operator:

d

o
E[ ]=5—t[ J+o,x[ ] (4.13)

The following important relation derives at once from (4.11) or (4.13):

d o
(i)_,»(t)EE(of(t)=—5;0)f(t). (4.14)

That is, the absolute and apparent time rates of change of the angular velocity
 of the moving frame are the same. This means only that if first we write o,
in the frame &, differentiate the result keeping the directions I, fixed, and
afterwards change the basis from I, to i,, the derivative dw,/dt would be the
same as the result dw /6t obtained by first referring the vector @, to the
moving frame directions i,, and then differentiating w, while keeping the basis
vectors i, fixed.

The fundamental equation (4.11) will be applied in three examples that
follow. In the first two examples, the time derivative of the angular velocity of
the arm of a robotic device and of the position vector of a point on the arm,
both referred to a moving reference frame, will be determined. Time
derivatives of the same vectors referred to a fixed reference frame also will be
computed for comparison. The third example concerns evaluation of the first
and second time derivatives of an angular velocity vector for a gear driven by
a motor on a rotating platform. These examples will demonstrate the sim-
plicity achieved by use of the basic relation (4.11); and they will prepare the
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way for the future derivation ol generalized equations for the total angular
acceleration of one of several connected rigid bodies, and for the velocity and
acceleration of a particle viewed from two reference frames in relative motion.

Example 4.1. At the instant ¢,, the telescopic arm OA of a robot shown
in Fig. 44 is being lowered with an angular speed f§=0.2 rad/sec, which is
increasing at the rate of 0.3 rad/sec each second, relative to the swivel yoke.
The yoke has a constant angular speed & = 0.5 rad/sec about a fixed vertical
axis K in a frame @ = {O; I, } fixed in the machine foundation. Let o, denote
the angular velocity of the arm relative to the yoke, whose angular velocity
relative to the machine is denoted by w,, as indicated in Fig. 4.4. Find the
time rate of change in @ of the vector w, referred to a reference frame
¢ = {0;i,} imbedded in the yoke so that k=K.

Solution. It is evident from Fig. 4.4 that the angular velocity m, relative
to the yoke frame ¢ has a simple representation when referred to ¢. But this
frame is moving with angular velocity ®, = 0.5k rad/sec relative to the
machine frame @. Thus, the time derivative in @ of the vector ®,, which is
referred to a frame moving with angular velocity

o, = o, =gk =0.5k rad/sec (4.15a)
relative to @, may be determined easily by (4.11):

5
d)zz%+m,xmz, (4.15b)

in which the definition of the d-derivative in (4.10) is to be recalled. At the
moment of interest, the angular velocity and the angular acceleration of OA
relative to ¢ are, respectively,

(5(02

o1

®, = fj=0.2j rad/sec, Bij = 0.3j rad/sec? (4.15¢)

P p Frame g in
w, the Yoke

Frame ® in !
the Machine

Figure 4.4. A robotistic device with an angular
velocity w, referred to a rotating frame ¢ fixed
in the supporting yoke.
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referred to ¢. Hence, with (4.15a) and the first equation in (4.15c), we have
o, x ®,=0.5k x 0.2j = —0.1i rad/sec’. (4.15d)

Substitution of the second equation in (4.15¢) and (4.15d) into (4.15b) gives
the solution at the instant ¢#,:

@, = 0.3j — 0.1i rad/sec®. (4.15¢)

This is the time rate of change in the fixed frame @ of the angular velocity ®,,
but referred to frame ¢, ie., expressed in terms of the vector basis of the
moving frame ¢.

This completes the solution of the problem. It may prove helpful,
however, to examine the familiar method in which we first write @, in the
basis of the preferred frame @, differentiate the result as usual, and then, by a
change of basis, transform the derived formula back to ¢ for comparison with
(4.15e).

In this approach, we must first express the basis vectors i, of frame ¢ in
terms of the basis vectors I, of frame &:

i=cosal+sinald, j= —sinal+cosald, k=K. (4.16a)

In the present case, only the second of (4.16a) is needed. Then the first
equation in (4.15¢) becomes

®,=p(—sina I+ cos a J). (4.16b)

This is the angular velocity of the arm OA relative to the yoke, as before, but
now referred to frame &. Differentiation of (4.16b) in frame @ yields

&, = —(fsin a+af cos a) I+ (§ cos a — af sin o) J. (4.16¢)

This is the angular acceleration of the arm OA relative to ¢ but referred to @.
But the same vector may be referred to any frame whatever. Therefore,
substitution into (4.16¢) of the change of basis from I into i, which is left for

the reader, delivers the same physical result as (4.16¢) but referred to ¢ again.
We find

o, = —afi+ (4.16d)

Indeed, it will be seen that this formula follows more easily from (4.15b) upon
substitution of the first expressions in (4.15¢) and (4.15a). Naturally, use here
of the assigned numerical values for &, £, and ff in (4.16d) will yield the same
instantaneous result (4.15¢) derived algebraically from (4.15b). D

In the first solution based upon (4.15b), the usual differentiation
operations were not needed. In the second approach, however, it was
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necessary to write @, in terms of the variables o and f and execute the dif-
ferentiation of the vector function (4.16b). Notice further that some messy
geometry was avoided by use of the fundamental rule (4.11). It is seen that the
geometrical considerations and differentiation operations essential in the
familiar approach are reduced almost entirely to simpler vector algebraic
operations through use of the general relation (4.11). As a consequence, this
basic equation may be applied directly in problems where only the instan-
taneous values of the various quantities are assigned. The simplicity of the
general formula (4.16d) referred to the moving frame compared with the
corresponding relation (4.16c) referred to the fixed frame certainly is evident.

Example 4.2. Let us suppose that during the motion of the robot
described in the last example, the length of the telescopic arm is a computer-
controlled function of time denoted by /(¢) in Fig. 44. (a) What is the time
rate of change in ¢ of the position vector of 4 referred to the moving yoke
frame at an arbitrary time? (b) What is its time derivative in @?

Solution. (a) The position vector of 4 on the telescopic arm in Fig. 4.4 is
given in frame ¢ by

x(A, t)=I(t)[sin B(¢) i + cos B(¢) k1. (4.17a)

The time derivative of this vector in the frame ¢, in which the basis vectors i,
are fixed, is determined by use of (4.10); we get

dx(4, 1) _ ox(A, 1)

7 57 =(/sinf+IBcosf)i

7]

+ (I cos p—1fsin p) k. (4.17b)

We shall see later that this is the velocity of A as seen by an observer situated
in the yoke frame ¢ and referred to the same frame; it is the velocity of 4
relative to .

(b) The time derivative in @ of the position vector in (4.17a), which is a
vector referred to the moving yoke frame, is determined by use of (4.11); we
have

dx(A4, 1) 0x(4, 1)
dt Ot

+a, xx(4, 1). (4.17¢)

The first term on the right-hand side is given by (4.17b). The constant angular
velocity of the moving frame is ®, = o, = 0.5k rad/sec; thus, with (4.17a), we
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obtain @, x x = (//2)sin fj. Using this result and (4.17b) in (4.17c), we find
the solution

dx(A, t)
dt

=(isinﬁ+lﬂ'cosﬁ)i+%sinﬁj
+ (Icos B—1fsin B) k. (4.17d)

This is the velocity of 4 as seen by an observer situated in the machine foun-
dation @ but referred to the moving frame ¢ for convenience; it is the
(absolute) velocity of A relative to @.

The physical ideas illustrated here will be expanded further on. In
preparation for our future studies, the student should find it helpful to deter-
mine the derivative of (4.17b) in the frames ¢ and @. O

Example 4.3. An electric motor M shown in Fig. 4.5 is attached to a
platform that rotates with a constant angular speed of 10 rev/sec about a ver-
tical axis. The motor drives a gear G at a constant angular speed
@, =300 rev/min relative to the platform. (a) Find the time derivative of the
angular velocity vector m, in the fixed spatial frame &. (b) What is @, in &?
(c) What are these derivatives in the moving frame ¢ fixed in the platform?
Refer all vectors to the frame ¢ shown in Fig. 4.5.

Solution. (a) The moving frame ¢ = {O; i, } is fixed in the platform with j
directed along the center line of the motor axle. Thus, with modified units and
referred to the moving frame ¢, ®,= 207k rad/sec is the constant angular
velocity of the platform frame ¢ relative to @, and ®, = 10nj rad/sec is the
angular velocity of the gear relative to the platform. It is clear from (4.10) that
in the rotating ¢-frame dw,/6t=0; and it follows from the general rule (4.11)
or by (4.12) that

]
o, =%+mj-x ©, = —2007° i rad/sec’. (4.18a)

This is the time derivative of @, in @, but referred to the moving frame.
Because @, is a constant vector in ¢, clearly, the change in @, seen by the

Figure 4.5. A constant vector ®; in the
rotating platform frame ¢ has a nonzero
time derivative in the fixed frame & due to
the rotation of ¢ relative to @.
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observer in @ is due solely to the change in its direction due to the rotation of
¢, which is in the direction of —i indicated in (4.18a).

(b) To find @,, we observe from (4.18a) that @, is a constant vector in
the platform frame ¢; and hence d@,/6¢=0. This is the time derivative of @,
in ¢. Then, with (4.11), the time derivative of @, in @ is

. 0l . 3 3
@, =W+ o, x ®, = —40007°j rad/sec’. (4.18b)

Clearly, the corresponding derivative in ¢ is 6°w,/6¢* =0.

(¢) Because ®, is a constant vector in ¢, all of its derivatives vanish in
@:0"®,/6t" =0, as we saw above for n=1,2. This completes the problem
solution.

We have determined in (4.18a) the angular acceleration @, in frame @
when the angular velocity vector o, is referred to the reference frame ¢ which
is turning with angular velocity @, in @. However, as shown in Example 4.1,
we may obtain the same results by referring o, to the preferred frame @. First,
we must write the moving basis i, in terms of the fixed basis I,. From the
geometry of Fig. 4.5, we have

i=cosO1+sin @ J, j=cosO0J—sin01, k=K. (4.18¢)
Thus, referred to @, we have the general formula

o, = 107j = 107(cos 8 J — sin 8 I) rad/sec; (4.18d)

and with 6 = |e,| = 20m rad/sec, we obtain
@, = —1076(sin 6 J + cos 0 T) = —2007i rad/sec?, (4.18e)

in which the change of basis back to ¢ is left for the reader. This is the same
as (4.18a). Construction of @, is left to the student. This method illustrates
again that an important advantage of the procedure developed in this chapter
of referring a vector to a moving frame is that unnecessarily complicated
geometrical considerations may be avoided, particularly in three-dimensional
problems, and the calculations are reduced in large measure to casy vector
algebraic computations.

4.4. Kinematic Chain Rule for Angular Velocity Vectors

The foregoing examples show that several angular velocity vectors may
arise naturally in some problems. In this section, we shall develop a rule for
their composition. Thus, with this objective in mind, let us write ®,, for the
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angular velocity of the frame ¢ relative to frame &. The subscripts 1 and 0
denote the frames ¢ and @, respectively, and ®,, is read as the angular
velocity of frame 1 relative to frame 0. Now, as far as the moving observer is
concerned, frame 1 serves as his preferred frame, while frame 0 seems to be
moving with angular velocity w,,. Intuitively, we should expect that these
simple relative angular velocities are related by ®,,= —®,,. This will be
proved below.

44.1. The Simple Relative Angular Velocity Rule

It proves convenient in the following construction to append to the
derivatives of U(z) subscripts 1 and 0 to emphasize the frame wherein the rate
is computed. Moreover, we note that for any frame f the following notations
are equivalent:

dU

_du _ou
T odt

U _ou
4 , ot

; (4.19)
f

that is, the time rate of change of U in any frame f is always obtained by dif-
Serentiation of U in f with the basis vectors in f kept fixed, as emphasized in
(4.10). This was seen earlier for the derivatives in (4.4). Equation (4.4a), for
example, is the derivative of the position vector x in (4.1a) with the basis vec-
tors i; in @, kept fixed; hence, either of the representations x,, = dx/dt|,, =
dx/dt|,, expresses more precisely the content of (4.4a). The formula (4.4b) is
the derivative of the same vector referred to ¢, in which the basis vectors i,
are fixed; thus, any one of the forms x, = dx/dt|, = 0x/dt|,, identifies better
the result (4.4b) for x given by (4.1b) in frame ¢,. And similar notation
clarifies (4.4c) as the derivative of (4.1¢) for x referred to frame ¢, wherein the
basis I, is fixed. Clearly, then, the three derivatives (4.4) have different
meanings which the special notation defined in (4.19) helps to clarify,
especially when these different derivatives of the same vector occur in the
same or related equations. Indeed, with the notation of (4.19), our basic
relation (4.11) may be written as

Uy=U,+@,,xU. (4.20a)

In words, the (absolute) time derivative of U in frame 0 is equal to the sum of
the (apparent) time derivative of U in frame 1 and its convective time rate of
change due to the angular velocity of frame 1 relative to frame 0.

Because our choice of preferred frame is arbitrary, we may reverse our
previous choice in (4.11) and thus obtain for the same arbitrary vector U(¢)
the parallel relation

U, =U,+ oy x U. (4.20b)
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Addition of the last two equations yields
(0, + @y )xU=0. (4.20c)

Since U is arbitrary, (4.20c) implies that @, + @y =0. We thus obtain the
following simple relative angular velocity rule:

W= —Wy,. (4.20d)

Hence, the angular velocity of frame 1 relative to frame 0 is equal and
oppositely directed to the angular velocity of frame O relative to frame 1.

4.4.2. The Composition Rule for Several Angular Velocity Vectors

The special notation introduced above may be easily extended to account
for any number of moving reference frames; and the set of equations (4.20)
may be expressed in a more general form. This will be done next; and the
main result will be used to derive the general composition rule for several
angular velocity vectors.

Let us consider n reference frames ¢,,i=1,2..,n, each with angular
velocity ®,, relative to a preferred frame @ = @,; and, henceforward, let us
agree for convenience to refer to the frame ¢, simply as the frame k. Then o,
denotes the angular velocity of frame i relative to frame j; and the obvious
extension of the notation introduced in (4.19) and (4.20) for any vector U
leads to the general formula*

U,=U,+w,xU. (4.21)

That is, the time rate of change of a vector U in frame j is equal to its time rate
of change in frame i plus the convective time rate of change of U due to the
angular velocity of frame i relative to frame j.

By changing the frame labels in (4.21), we may write

U=U,+o,xU=U+a,xU, ijk=012.,n
Therefore, (w; —o,;—®;)xU=0 follows upon substitution of (4.21) into

the third term. Because U is arbitrary, this delivers the following general com-
position rule for angular velocity vectors:

Oy =0;+ 0, i, j,k=0,1,2,., n (4.22)

Two easy results derive from (4.21) and (4.22). First, it follows easily
from (4.21) that @,;=0 for all j=0,1,2,., n. Plainly, the frame j has no
angular velocity relatwe to itself. As a consequence, the replacement of the
index k by i in (4.22) reveals that the angular velocity of frame i relative to

* The summation rule for repeated indices is suspended for all chain rule relations.
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frame j is equal to the opposite of the angular velocity of frame j relative to
frame i:

0,= —0;.

(4.23)

Finally, (4.22) may be used to establish the following kinematic chain rule
for angular velocity vectors:

W =0,, 1+0,_ 1, ,+ " +0;+0. (4.24)

To derive this useful result, we put j=i—1, k=0 in (4.22) to obtain the
relation

(1)‘-0:(0“',] +0),',1’0, i= 1, 2,..., n. (4253)
It thus follows by (4.25) that

mnO = mn.n—l + @, 1,0;

©,_ l.0=mnv Ln—2 + mn72,0;

W3 = W33 + Wy,
Wy = 0y + Wyp.

Upon substituting the second of these into the first, and so on, we reach the
important result stated in (4.24). In particular, for the special case n=3, we
see in the construction above and from (4.24) that

W30= 03 + Oy =03 + Oy + Q. (4.25b)

The composition rule (4.22) plainly represents the generalized kinematic chain
rule for angular velocity vectors. Some applications of these important results
are presented below.

Example 4.4. Recall the earlier Example 4.3 of a motor-driven gear
mounted on a rotating platform shown in Fig. 4.5. Therein, the constant

rame
(Fixed in
%, the platform)

(Fixed in the ground)

Figure 4.6. Application of multiple reference frames to a motor-driven gear mounted on a spin-
ning platform.
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angular velocity of the gear relative to the platform is given as
o, = 10xj, rad/sec; and ®,=20nk, rad/sec is the constant angular velocity of
the platform relative to the ground. Determine the total angular velocity of
the gear relative to the ground, but referred to a frame fixed in the platform.
Label and identify carefuily all references frames used.

Solution. The problem statement suggests that three imbedded reference
frames are relevant. The frames may be labeled in any convenient manner. We
shall use the consecutive numerical scheme shown in Fig. 4.6. Thus,
frame 2= {G;i,, j,, k,} is fixed in the gear G; frame 1={0;i,,j,, k,} is
imbedded in the platform P; and frame 0= {F;I, J, K} is in the ground F.

Recalling the assigned data, we identify ®,, =@, = 10%j, rad/sec as the
constant angular velocity of frame 2 (the gear) relative to frame 1 (the plat-
form), and ®,,= o, =207k, rad/sec as the constant angular velocity of
frame 1 relative to frame 0 (the ground). We note also that j, =j,. Therefore,
the total angular velocity of the gear frame 2 relative to the ground frame 0,
but referred to the platform frame 1, is given by the kinematic chain rule
(4.24) for the case n=2:

@y =0, + @, = 107j, + 207k, rad/sec. (4.26a)

The choice of labels to be assigned to the various frames is unimportant;
but their use must be consistent with the composition rules derived above. In
the present problem, for example, the gear frame may be labeled as frame 3,
and the platform frame as frame 3. Then if the ground frame is identified as
frame 4, the total angular velocity of frame 5 relative to frame 4, but referred
to the platform frame 3, is given by suitable use of the general kinematic chain
rule (4.22):

M5y = 053+ @4, = 107j, + 207k rad/sec, (4.26b)

wherein we have identified ®s; =, as the angular velocity of the gear
frame 5 relative to the platform frame 3 and ., =, as the angular velocity
of the platform frame 3 relative to the ground frame 4. Of course, the result
agrees with (4.26a).

Sometimes the use of letters for the subscripts in the chain rule (4.22) or
(4.24) is helpful. For example, the angular velocity of the gear G relative to
the ground F may be written as

OGr=0gp+ Opp, (4.26c)

where m, denotes the angular velocity of the gear G relative to the platform
P and @, is the angular velocity of the platform P relative to the ground F.

Any one of the foregoing frame labeling schemes may be used. However,
use of consecutive numerical labels that reflect the chain of angular velocities
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involved in the problem usually is more convenient, especially for the com-
putation of the total angular acceleration studied later. In any case, care must
be exercised to name and identify the various frames or the bodies in which the
frames are imbedded. ]

Example 4.5. Recall the data for the moment of interest ¢, described in
Example 4.1, and suppose further that the claw attached to the telescopic arm
of the robot turns about the arm axis with an angular velocity
®,=0.1y rad/sec relative to the arm, as indicated. The data are shown in
Fig. 4.7, in which four appropriate reference frames also are defined. Find for
the instant 7, the total angular velocity of the claw in the machine frame 0,
but referred to frame 1 fixed in the yoke.

Solution. Let us write ®,,=0.1y rad/sec for the angular velocity of the
claw frame 3 = {4;y, e, f} relative to the arm frame 2= {0;7,i’,j} whose
angular velocity relative to the yoke frame 1= {0O;i,j, k} is written as
®,, =m,=02jrad/sec. Let ®,,=o,=05krad/sec denote the angular
velocity of the yoke frame 1 relative to the preferred, machine
frame 0= {O; L, J, K}. Then the total angular velocity of the claw frame 3
relative to the machine frame 0 is given by use of the chain rule (4.25b):

O3 = 03, + O, + ®,0=0.1y + 0.2j + 0.5k rad/sec. (4.27a)

But this is not yet referred to frame 1; it remains to refer y to frame 1.
The geometry provides

y=sin foi+cos fok  with B =B(to). (4.27b)

W=y,
Frame 3={A;7. e, f} 0.1‘yrad/sec

is fixed in the Claw

Frame 1 ={0; i, }, k}
is fixed in the Yoke
Frame 0={0; 1, J, K} w, =w10:0.5krad/sec
is in the Machine

|

i"____isin the Arm OA

Figure 4.7. Multiple reference frames applied to the complex rotations of a robot.
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Then use of (4.27b) in (4.27a) delivers

03, =0.1sin fyi+0.2j + (0.5+ 0.1 cos B,) k rad/sec, (4.27¢)

in which f, is the angular placement of the arm at the time ¢, shown in
Fig. 4.7. The result (4.27c) is the total angular velocity of the claw frame 3
relative to the machine frame 0 and referred to the yoke frame 1, at the
instant of interest.

4.4.2.1.  Application to a Universal Joint Mechanism

The universal joint illustrated in Fig. 4.8 is a mechanism used to connect
rotating shafts that intersect in a constant angle ¢. Each connecting shaft ter-
minates in a U-shaped yoke. The yokes are connected by a rigid cross link,
the ends of which are set in bearings in the yokes at 4, B, C, and D. When the
drive yoke turns as shown in Fig. 4.8, the cross link must rotate relative to the
yoke about its axle AB. The motion of the cross link about the axle CD and
relative to the follower yoke is similar. We are going to show by use of the
general chain rule (4.22) that even if the angular speed w, of the drive shaft is
constant, the angular speed w, of the follower shaft will not be uniform. We
seek the ratio w,/w, of the angular speeds and its maximum and minimum
values. The variation in the angular speed ratio with the angle of rotation of
the drive yoke for various shaft angles will be described graphically at the end.

Let w,, =, and m,,= ®, denote the respective angular velocities of the
drive shaft and follower shaft, and write ®,, for the unknown angular velocity
of the cross link, all relative to a preferred frame ¢, = {F;i,}. These vectors
are identified in Fig. 4.9 as the angular velocities in ¢, of three reference
frames: ¢,={0;06,,7,,p,} fixed in the drive yoke; ¢,={0;0,,7,, 1,}
imbedded in the follower yoke; and @5 = {0;y,, Y., v5} attached to the rigid
cross link. The kinematic chain rule (4.22) thus yields two relations con-
necting these vectors:

W30 = W3 + W9 = O3 + Oy, (4.28a)

wherein @, is the angular velocity of the cross link (frame 3) about the axle

R
C Follower Yoke 2

Figure 4.8. A typical universal joint mechanism.
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Frame @, in
“ the Follower Yoke

Frame ¢, in
Y, the Cross Link

Frame ?, in
the Drive Yoke (a)

Figure 4.9. Exploded view of the universal joint showing the three imbedded frames.

AB relative to the drive yoke (frame 1), and ®,, has a corresponding
meaning.

We note in Figs. 4.9 and 4.9a that the unit vectors y, and y, are along the
arms of the cross link, and the unit vectors ¢, and &, are along the shafts.
Hence, (4.28a) may be written as

@31Y1+ W0 = W33+ WG, (4.28b)

To eliminate w;; and w;,, we form the scalar product of (4.28b) with the unit
vector y; =7, X ¥,, and thereby obtain the desired formula for the ratio of the
angular speeds:

0,/ = W30/@W10= (Y1 X V2" 61)/(Y1 X T2 63). (4.28¢)

This completes our application of the kinematic chain rule for angular
velocity vectors. The rest of the analysis concerns the interpretation of (4.28¢)
in terms of the shaft angle and the angle of rotation of the drive yoke.

Since v, is perpendicular to both y, and ¢,, we may write y, = a6, x7Y,,
where a is an unknown scalar. Therefore, with y, xy,=7, x (26, x7v,)=
a[6,— (Y, 6,)¥;], and noting also that y, - 6, =0, we obtain from (4.28c)

@/, =61 6/[1—(y,°6,)°T=cos ¢/[1—(v,-6;)’]  (4.28d)

where ¢ is the shaft angle shown in Fig. 4.9a.

Let 6 denote the angular placement of the director y, of the cross link
arm AB, which is just the rotation angle of the drive yoke; and chose ¢, so
that its xy plane contains ¢, and ¢, with ¢, =1, as shown in Fig. 4.10. Then
the figure geometry gives

v,=cos 0 j+sin 0k, 6,=cosdi—singj. (4.28¢)
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